Statistical inference for geometric processes with gamma distributions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lam Yeh & So Kuen Chan, 1998. "Statistical inference for geometric processes with lognormal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 99-112, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- J.S.K. Chan & W.Y. Wan & P.L.H. Yu, 2014. "A Poisson geometric process approach for predicting drop-out and committed first-time blood donors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1486-1503, July.
- Chen, Jianwei & Li, Kim-Hung & Lam, Yeh, 2010. "Bayesian computation for geometric process in maintenance problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 771-781.
- Aydogdu, Halil & Kara, Mahmut, 2012. "Nonparametric estimation in [alpha]-series processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 190-201, January.
- Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
- Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
- Jennifer Chan & Doris Leung, 2010. "Binary geometric process model for the modeling of longitudinal binary data with trend," Computational Statistics, Springer, vol. 25(3), pages 505-536, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tang, Ya-yong & Lam, Yeh, 2006. "A [delta]-shock maintenance model for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 168(2), pages 541-556, January.
- Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
- Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
- Chen, Jinyuan & Li, Zehui, 2008. "An extended extreme shock maintenance model for a deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1123-1129.
- Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Chen, Jianwei & Li, Kim-Hung & Lam, Yeh, 2010. "Bayesian computation for geometric process in maintenance problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 771-781.
- J.S.K. Chan & W.Y. Wan & P.L.H. Yu, 2014. "A Poisson geometric process approach for predicting drop-out and committed first-time blood donors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1486-1503, July.
- Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
- Aydogdu, Halil & Kara, Mahmut, 2012. "Nonparametric estimation in [alpha]-series processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 190-201, January.
- Lam, Yeh & Zhang, Yuan Lin & Liu, Qun, 2006. "A geometric process model for M/M/1 queueing system with a repairable service station," European Journal of Operational Research, Elsevier, vol. 168(1), pages 100-121, January.
- Lam, Yeh & Zhang, Yuan Lin & Zheng, Yao Hui, 2002. "A geometric process equivalent model for a multistate degenerative system," European Journal of Operational Research, Elsevier, vol. 142(1), pages 21-29, October.
- Jennifer Chan & Doris Leung, 2010. "Binary geometric process model for the modeling of longitudinal binary data with trend," Computational Statistics, Springer, vol. 25(3), pages 505-536, September.
- Lam, Yeh, 2007. "A geometric process maintenance model with preventive repair," European Journal of Operational Research, Elsevier, vol. 182(2), pages 806-819, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:47:y:2004:i:3:p:565-581. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.