IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i6p1332-1341.html
   My bibliography  Save this article

Hypothesis tests to determine if all true positives have been identified on a receiver operating characteristic curve

Author

Listed:
  • Laurens Beran

Abstract

For classification problems where the test data are labeled sequentially, the point at which all true positives are first identified is often of critical importance. This article develops hypothesis tests to assess whether all true positives have been labeled in the test data. The tests use a partial receiver operating characteristic (ROC) that is generated from a labeled subset of the test data. These methods are developed in the context of unexploded ordnance (UXO) classification, but are applicable to any binary classification problem. First, the likelihood of the observed ROC given binormal model parameters is derived using order statistics, leading to a nonlinear parameter estimation problem. I then derive the approximate distribution of the point on the ROC at which all true instances are found. Using estimated binormal parameters, this distribution can be integrated up to a desired confidence level to define a critical false alarm rate (FAR). If the selected operating point is before this critical point, then additional labels out to the critical point are required. A second test uses the uncertainty in binormal parameters to determine the critical FAR. These tests are demonstrated with UXO classification examples and both approaches are recommended for testing operating points.

Suggested Citation

  • Laurens Beran, 2014. "Hypothesis tests to determine if all true positives have been identified on a receiver operating characteristic curve," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1332-1341, June.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1332-1341
    DOI: 10.1080/02664763.2013.868598
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.868598
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.868598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James A. Hanley, 1988. "The Robustness of the "Binormal" Assumptions Used in Fitting ROC Curves," Medical Decision Making, , vol. 8(3), pages 197-203, August.
    2. Donald Dorfman & Edward Alf, 1968. "Maximum likelihood estimation of parameters of signal detection theory—A direct solution," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 117-124, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean F. Reardon & Andrew D. Ho, 2015. "Practical Issues in Estimating Achievement Gaps From Coarsened Data," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 158-189, April.
    2. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
    3. Juana-María Vivo & Manuel Franco & Donatella Vicari, 2018. "Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 683-704, September.
    4. Eugene Demidenko, 2012. "Confidence intervals and bands for the binormal ROC curve revisited," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 67-79, March.
    5. Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
    6. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    7. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    8. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    9. Chris J. Lloyd, 2000. "Regression Models for Convex ROC Curves," Biometrics, The International Biometric Society, vol. 56(3), pages 862-867, September.
    10. Jean Mary Zarate & Caroline R Ritson & David Poeppel, 2013. "The Effect of Instrumental Timbre on Interval Discrimination," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.
    11. Manuel Franco & Juana-María Vivo, 2021. "Evaluating the Performances of Biomarkers over a Restricted Domain of High Sensitivity," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    12. Maria G.M. Hunink & Douglas K. Richardson & Peter M. Doubilet & Colin B. Begg, 1990. "Testing for Fetal Pulmonary Maturity," Medical Decision Making, , vol. 10(3), pages 201-211, August.
    13. Robert M. Centor, 1985. "A Visicalc Program for Estimating the Area Under a Receiver Operating Characteristic (ROC) Curve," Medical Decision Making, , vol. 5(2), pages 139-148, June.
    14. Debashis Ghosh, 2004. "Semiparametic models and estimation procedures for binormal ROC curves with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1038, Berkeley Electronic Press.
    15. Anna N. Angelos Tosteson & Colin B. Begg, 1988. "A General Regression Methodology for ROC Curve Estimation," Medical Decision Making, , vol. 8(3), pages 204-215, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1332-1341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.