IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i6p1286-1306.html
   My bibliography  Save this article

Multivariate survival mixed models for genetic analysis of longevity traits

Author

Listed:
  • Rafael Pimentel Maia
  • Per Madsen
  • Rodrigo Labouriau

Abstract

A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the baseline hazard function will be assumed to be piece-wise constant. The discrete time models used are multivariate variants of the discrete relative risk models. These models allow for regular parametric likelihood-based inference by exploring a coincidence of their likelihood functions and the likelihood functions of suitably defined multivariate generalized linear mixed models. The models include a dispersion parameter, which is essential for obtaining a decomposition of the variance of the trait of interest as a sum of parcels representing the additive genetic effects, environmental effects and unspecified sources of variability; as required in quantitative genetic applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed. Some key model control techniques are discussed in a supplementary online material.

Suggested Citation

  • Rafael Pimentel Maia & Per Madsen & Rodrigo Labouriau, 2014. "Multivariate survival mixed models for genetic analysis of longevity traits," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1286-1306, June.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1286-1306
    DOI: 10.1080/02664763.2013.868416
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.868416
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.868416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuli Ripatti & Juni Palmgren, 2000. "Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood," Biometrics, The International Biometric Society, vol. 56(4), pages 1016-1022, December.
    2. Bob Thompson, 2008. "Liveability," ERES eres2008_275, European Real Estate Society (ERES).
    3. Suely Ruiz Giolo & Clarice Garcia Borges Dem�trio, 2011. "A frailty modeling approach for parental effects in animal breeding," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 619-629, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark B. Taylor, 2021. "Counter Corporate Litigation: Remedy, Regulation, and Repression in the Struggle for a Just Transition," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    2. Ryan K. Jacobson & Chockalingam Viswesvaran, 2017. "A Reliability Generalization Study of the Political Skill Inventory," SAGE Open, , vol. 7(2), pages 21582440177, May.
    3. Zeynep Filiz, 2010. "Service quality of travel agents in Turkey," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(4), pages 793-805, June.
    4. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    6. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    7. Lili Wang & Kevin He & Douglas E. Schaubel, 2020. "Penalized survival models for the analysis of alternating recurrent event data," Biometrics, The International Biometric Society, vol. 76(2), pages 448-459, June.
    8. Yu Liu & Chin-Shang Li, 2023. "A linear spline Cox cure model with its applications," Computational Statistics, Springer, vol. 38(2), pages 935-954, June.
    9. Andreas Wienke & Konstantin G. Arbeev & Isabella Locatelli & Anatoli I. Yashin, 2003. "A simulation study of different correlated frailty models and estimation strategies," MPIDR Working Papers WP-2003-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    10. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    11. Couwenberg Oscar, 2008. "Corporate Architecture and Limited Liability," Review of Law & Economics, De Gruyter, vol. 4(2), pages 621-640, December.
    12. Dragana Cvijanović & Stanimira Milcheva & Alex Minne, 2022. "Preferences of Institutional Investors in Commercial Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 65(2), pages 321-359, August.
    13. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    14. Yu, Binbing, 2006. "Estimation of shared Gamma frailty models by a modified EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 463-474, January.
    15. Andreas Groll & Trevor Hastie & Gerhard Tutz, 2017. "Selection of effects in Cox frailty models by regularization methods," Biometrics, The International Biometric Society, vol. 73(3), pages 846-856, September.
    16. Il Do Ha & Liming Xiang & Mengjiao Peng & Jong-Hyeon Jeong & Youngjo Lee, 2020. "Frailty modelling approaches for semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 109-133, January.
    17. Sharif Mahmood & Begum Zainab & A.H.M. Mahbub Latif, 2013. "Frailty modeling for clustered survival data: an application to birth interval in Bangladesh," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2670-2680, December.
    18. Guillaume Horny & Dragana Djurdjevic & Bernhard Boockmann & François Laisney, 2008. "Bayesian Estimation of Cox Models with Non-nested Random Effects: an Application to the Ratification Of ILO Conventions by Developing Countries," Annals of Economics and Statistics, GENES, issue 89, pages 193-214.
    19. Yongyun Shin & Stephen W. Raudenbush, 2011. "The Causal Effect of Class Size on Academic Achievement," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 154-185, April.
    20. Ondrej Stopka & Maria Stopkova & Rudolf Kampf, 2019. "Application of the Operational Research Method to Determine the Optimum Transport Collection Cycle of Municipal Waste in a Predesignated Urban Area," Sustainability, MDPI, vol. 11(8), pages 1-15, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1286-1306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.