IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i1p127-141.html
   My bibliography  Save this article

Analyzing propensity matched zero-inflated count outcomes in observational studies

Author

Listed:
  • Stacia M. DeSantis
  • Christos Lazaridis
  • Shuang Ji
  • Francis G. Spinale

Abstract

Determining the effectiveness of different treatments from observational data, which are characterized by imbalance between groups due to lack of randomization, is challenging. Propensity matching is often used to rectify imbalances among prognostic variables. However, there are no guidelines on how appropriately to analyze group matched data when the outcome is a zero-inflated count. In addition, there is debate over whether to account for correlation of responses induced by matching and/or whether to adjust for variables used in generating the propensity score in the final analysis. The aim of this research is to compare covariate unadjusted and adjusted zero-inflated Poisson models that do and do not account for the correlation. A simulation study is conducted, demonstrating that it is necessary to adjust for potential residual confounding, but that accounting for correlation is less important. The methods are applied to a biomedical research data set.

Suggested Citation

  • Stacia M. DeSantis & Christos Lazaridis & Shuang Ji & Francis G. Spinale, 2014. "Analyzing propensity matched zero-inflated count outcomes in observational studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 127-141, January.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:1:p:127-141
    DOI: 10.1080/02664763.2013.834296
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.834296
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.834296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    2. Kosuke Imai & Gary King & Elizabeth A. Stuart, 2008. "Misunderstandings between experimentalists and observationalists about causal inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 481-502, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smith, Daniel, 2020. "The Effects of Federal Research and Development Subsidies on Firm Commercialization Behavior," Research Policy, Elsevier, vol. 49(7).
    2. Sehee Kim & Fan Wu & Claudia Dahlerus & Deanna Chyn & Yi Li & Joseph M Messana, 2019. "Comparative effectiveness analysis of Medicare dialysis facility survey processes," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    2. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    3. Marco Caliendo & Stefan Tübbicke, 2020. "New evidence on long-term effects of start-up subsidies: matching estimates and their robustness," Empirical Economics, Springer, vol. 59(4), pages 1605-1631, October.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Xin Guo & Qiang Fu, 2024. "The Design and Optimality of Survey Counts: A Unified Framework Via the Fisher Information Maximizer," Sociological Methods & Research, , vol. 53(3), pages 1319-1349, August.
    6. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    7. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    8. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    9. Yanlin Tang & Liya Xiang & Zhongyi Zhu, 2014. "Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1112-1127, June.
    10. Damgaard, Christian, 2008. "Modelling pin-point plant cover data along an environmental gradient," Ecological Modelling, Elsevier, vol. 214(2), pages 404-410.
    11. Shen, Chung-Hua & Wu, Meng-Wen & Chen, Ting-Hsuan & Fang, Hao, 2016. "To engage or not to engage in corporate social responsibility: Empirical evidence from global banking sector," Economic Modelling, Elsevier, vol. 55(C), pages 207-225.
    12. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    13. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. Robert Richardson, 2022. "Spatial Generalized Linear Models with Non-Gaussian Translation Processes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 4-21, March.
    15. Berta, Paolo & Callea, Giuditta & Martini, Gianmaria & Vittadini, Giorgio, 2010. "The effects of upcoding, cream skimming and readmissions on the Italian hospitals efficiency: A population-based investigation," Economic Modelling, Elsevier, vol. 27(4), pages 812-821, July.
    16. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    17. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    18. Maurizio Canavari & Andreas C. Drichoutis & Jayson L. Lusk & Rodolfo M. Nayga, Jr., 2018. "How to run an experimental auction: A review of recent advances," Working Papers 2018-5, Agricultural University of Athens, Department Of Agricultural Economics.
    19. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    20. Sellers, Kimberly F. & Raim, Andrew, 2016. "A flexible zero-inflated model to address data dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 68-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:1:p:127-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.