IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i6p1333-1348.html
   My bibliography  Save this article

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

Author

Listed:
  • Sophie Bercu
  • Fr�d�ric Proïa

Abstract

A dynamic coupled modelling is investigated to take temperature into account in the individual energy consumption forecasting. The objective is both to avoid the inherent complexity of exhaustive SARIMAX models and to take advantage of the usual linear relation between energy consumption and temperature for thermosensitive customers. We first recall some issues related to individual load curves forecasting. Then, we propose and study the properties of a dynamic coupled modelling taking temperature into account as an exogenous contribution and its application to the intraday prediction of energy consumption. Finally, these theoretical results are illustrated on a real individual load curve. The authors discuss the relevance of such an approach and anticipate that it could form a substantial alternative to the commonly used methods for energy consumption forecasting of individual customers.

Suggested Citation

  • Sophie Bercu & Fr�d�ric Proïa, 2013. "A SARIMAX coupled modelling applied to individual load curves intraday forecasting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(6), pages 1333-1348, June.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:6:p:1333-1348
    DOI: 10.1080/02664763.2013.785496
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.785496
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.785496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong Chen & John L. Harris & Jun M. Liu & Lon-Mu Liu, 2006. "A semi-parametric time series approach in modeling hourly electricity loads," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 537-559.
    2. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    3. G. Gardner & A. C. Harvey & G. D. A. Phillips, 1980. "An Algorithm for Exact Maximum Likelihood Estimation of Autoregressive–Moving Average Models by Means of Kaiman Filtering," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 311-322, November.
    4. Antoniadis, Anestis & Paparoditis, Efstathios & Sapatinas, Theofanis, 2009. "Bandwidth selection for functional time series prediction," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 733-740, March.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    2. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2008. "Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting," DES - Working Papers. Statistics and Econometrics. WS ws081406, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    4. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    5. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    6. Dordonnat, Virginie & Koopman, Siem Jan & Ooms, Marius, 2012. "Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3134-3152.
    7. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
    8. Lisi, Francesco & Pelagatti, Matteo M., 2018. "Component estimation for electricity market data: Deterministic or stochastic?," Energy Economics, Elsevier, vol. 74(C), pages 13-37.
    9. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    10. Stephen Pollock, 2002. "Recursive Estimation in Econometrics," Working Papers 462, Queen Mary University of London, School of Economics and Finance.
    11. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    12. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
    13. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    14. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
    15. Alexopoulos, Thomas A., 2017. "The growing importance of natural gas as a predictor for retail electricity prices in US," Energy, Elsevier, vol. 137(C), pages 219-233.
    16. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    17. Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
    18. Phillip Gould & Anne B. Koehler & Farshid Vahid-Araghi & Ralph D. Snyder & J. Keith Ord & Rob J. Hyndman, 2004. "Forecasting Time-Series with Correlated Seasonality," Monash Econometrics and Business Statistics Working Papers 28/04, Monash University, Department of Econometrics and Business Statistics, revised Oct 2005.
    19. Amitava Mukherjee, 2013. "Nonparametric Phase-II monitoring for detecting monotone trend based on inverse sampling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 131-153, June.
    20. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:6:p:1333-1348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.