IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i11p2509-2522.html
   My bibliography  Save this article

A covariance-based test for shared frailty in multivariate lifetime data

Author

Listed:
  • Alan Kimber
  • Shah-Jalal Sarker

Abstract

We decompose the score statistic for testing for shared finite variance frailty in multivariate lifetime data into marginal and covariance-based terms. The null properties of the covariance-based statistic are derived in the context of parametric lifetime models. Its non-null properties are estimated using simulation and compared with those of the score test and two likelihood ratio tests when the underlying lifetime distribution is Weibull. Some examples are used to illustrate the covariance-based test. A case is made for using the covariance-based statistic as a simple diagnostic procedure for shared frailty in a parametric exploratory analysis of multivariate lifetime data and a link to the bivariate Clayton--Oakes copula model is shown.

Suggested Citation

  • Alan Kimber & Shah-Jalal Sarker, 2012. "A covariance-based test for shared frailty in multivariate lifetime data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2509-2522, August.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2509-2522
    DOI: 10.1080/02664763.2012.720966
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.720966
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.720966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manatunga, Amita K. & Oakes, David, 1996. "A Measure of Association for Bivariate Frailty Distributions," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 60-74, January.
    2. Klara Goethals & Paul Janssen & Luc Duchateau, 2008. "Frailty models and copulas: similarities and differences," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1071-1079.
    3. Hsieh, Jin-Jian, 2010. "Estimation of Kendall's tau from censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1613-1621, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    2. Elisa Luciano & Elena Vigna, 2005. "A note on stochastic survival probabilities and their calibration," ICER Working Papers - Applied Mathematics Series 1-2005, ICER - International Centre for Economic Research.
    3. Paul Janssen & Luc Duchateau, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 271-275, August.
    4. Leen Prenen & Roel Braekers & Luc Duchateau, 2017. "Extending the Archimedean copula methodology to model multivariate survival data grouped in clusters of variable size," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 483-505, March.
    5. Mesfioui, Mhamed & Quessy, Jean-François, 2008. "Dependence structure of conditional Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 372-385, March.
    6. Jose S. Romeo & Renate Meyer & Diego I. Gallardo, 2018. "Bayesian bivariate survival analysis using the power variance function copula," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 355-383, April.
    7. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    8. Akim Adekpedjou & Sophie Dabo‐Niang, 2021. "Semiparametric estimation with spatially correlated recurrent events," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1097-1126, December.
    9. Lajmi Lakhal-Chaieb & Richard J. Cook & Xihong Lin, 2010. "Inverse Probability of Censoring Weighted Estimates of Kendall's τ for Gap Time Analyses," Biometrics, The International Biometric Society, vol. 66(4), pages 1145-1152, December.
    10. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.
    11. Derumigny Alexis & Fermanian Jean-David, 2019. "On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior," Dependence Modeling, De Gruyter, vol. 7(1), pages 292-321, January.
    12. José Romeo & Nelson Tanaka & Antonio Pedroso-de-Lima & Victor Salinas-Torres, 2013. "Large sample properties for a class of copulas in bivariate survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 997-1015, November.
    13. Tao Sun & Yi Liu & Richard J. Cook & Wei Chen & Ying Ding, 2019. "Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 546-568, July.
    14. Candida Geerdens & Gerda Claeskens & Paul Janssen, 2016. "Copula based flexible modeling of associations between clustered event times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 363-381, July.
    15. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    16. Emura, Takeshi & Lin, Chien-Wei & Wang, Weijing, 2010. "A goodness-of-fit test for Archimedean copula models in the presence of right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3033-3043, December.
    17. Eleanderson Campos & Roel Braekers & Devanil J. Souza & Lucas M. Chaves, 2021. "Factor copula models for right-censored clustered survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 499-535, July.
    18. Hideatsu Tsukahara, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 287-289, August.
    19. Lakhal Lajmi & Rivest Louis-Paul & Beaudoin David, 2009. "IPCW Estimator for Kendall's Tau under Bivariate Censoring," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-22, February.
    20. Brito, Éder S. & Tomazella, Vera L.D. & Ferreira, Paulo H., 2022. "Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2509-2522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.