IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i9p2051-2062.html
   My bibliography  Save this article

Applying neural network Poisson regression to predict cognitive score changes

Author

Listed:
  • Nader Fallah
  • Arnold Mitnitski
  • Kenneth Rockwood

Abstract

In this study, we combined a Poisson regression model with neural networks (neural network Poisson regression) to relax the traditional Poisson regression assumption of linearity of the Poisson mean as a function of covariates, while including it as a special case. In four simulated examples, we found that the neural network Poisson regression improved the performance of simple Poisson regression if the Poisson mean was nonlinearly related to covariates. We also illustrated the performance of the model in predicting five-year changes in cognitive scores, in association with age and education level; we found that the proposed approach had superior accuracy to conventional linear Poisson regression. As the interpretability of the neural networks is often difficult, its combination with conventional and more readily interpretable approaches under the generalized linear model can benefit applications in biomedicine.

Suggested Citation

  • Nader Fallah & Arnold Mitnitski & Kenneth Rockwood, 2011. "Applying neural network Poisson regression to predict cognitive score changes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 2051-2062, November.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:2051-2062
    DOI: 10.1080/02664763.2010.545112
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2010.545112
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.545112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Pino-Mejias & Mercedes Carrasco-Mairena & Antonio Pascual-Acosta & Maria-Dolores Cubiles-De-La-Vega & Joaquin Munoz-Garcia, 2008. "A comparison of classification models to identify the Fragile X Syndrome," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 233-244.
    2. Dilip Nachane & Jose Clavel, 2008. "Forecasting interest rates: a comparative assessment of some second-generation nonlinear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 493-514.
    3. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    4. Joseph Brian Adams & Yijin Wert, 2005. "Logistic and neural network models for predicting a hospital admission," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 861-869.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    2. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    3. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    4. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    5. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    6. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    7. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    8. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    9. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    10. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    11. repec:lan:wpaper:2935 is not listed on IDEAS
    12. Subir K. Chakrabarti & Srikant Devaraj & Pankaj C. Patel, 2021. "Minimum wage and restaurant hygiene violations: Evidence from Seattle," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(1), pages 85-99, January.
    13. Coll Martínez, Eva & Arauzo Carod, Josep Maria, 2015. "Creative Industries: a Preliminary Insight to their Location Determinants," Working Papers 2072/250133, Universitat Rovira i Virgili, Department of Economics.
    14. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    15. Christopher Jeffords, 2014. "Preference-directed regulation when ethical environmental policy choices are formed with limited information," Empirical Economics, Springer, vol. 46(2), pages 573-606, March.
    16. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    17. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    18. Tue Gørgens & Dean Robert Hyslop, 2018. "The Specification of Dynamic Discrete-Time Two-State Panel Data Models," Econometrics, MDPI, vol. 7(1), pages 1-16, December.
    19. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    20. Philip G. Gayle & Zijun Luo, 2015. "Choosing between Order-of-Entry Assumptions in Empirical Entry Models: Evidence from Competition between Burger King and McDonald's Restaurant Outlets," Journal of Industrial Economics, Wiley Blackwell, vol. 63(1), pages 129-151, March.
    21. Stephen Coate & Michael Conlin, 2002. "Voter Turnout: Theory and Evidence from Texas Liquor Referenda," NBER Working Papers 8720, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:2051-2062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.