IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i5p987-1005.html
   My bibliography  Save this article

Bayesian--frequentist hybrid model with application to the analysis of gene copy number changes

Author

Listed:
  • Ao Yuan
  • Guanjie Chen
  • Juan Xiong
  • Wenqing He
  • Wen Jin
  • Charles Rotimi

Abstract

Gene copy number (GCN) changes are common characteristics of many genetic diseases. Comparative genomic hybridization (CGH) is a new technology widely used today to screen the GCN changes in mutant cells with high resolution genome-wide. Statistical methods for analyzing such CGH data have been evolving. Existing methods are either frequentist's or full Bayesian. The former often has computational advantage, while the latter can incorporate prior information into the model, but could be misleading when one does not have sound prior information. In an attempt to take full advantages of both approaches, we develop a Bayesian-frequentist hybrid approach, in which a subset of the model parameters is inferred by the Bayesian method, while the rest parameters by the frequentist's. This new hybrid approach provides advantages over those of the Bayesian or frequentist's method used alone. This is especially the case when sound prior information is available on part of the parameters, and the sample size is relatively small. Spatial dependence and false discovery rate are also discussed, and the parameter estimation is efficient. As an illustration, we used the proposed hybrid approach to analyze a real CGH data.

Suggested Citation

  • Ao Yuan & Guanjie Chen & Juan Xiong & Wenqing He & Wen Jin & Charles Rotimi, 2011. "Bayesian--frequentist hybrid model with application to the analysis of gene copy number changes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 987-1005, February.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:987-1005
    DOI: 10.1080/02664761003692449
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664761003692449
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664761003692449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guha, Subharup & Li, Yi & Neuberg, Donna, 2008. "Bayesian Hidden Markov Modeling of Array CGH Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 485-497, June.
    2. Oscar M Rueda & Ramón Díaz-Uriarte, 2007. "Flexible and Accurate Detection of Genomic Copy-Number Changes from aCGH," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-8, June.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Chen & Ao Yuan & Aiyi Liu & Guanjie Chen, 2014. "Longitudinal data analysis using Bayesian-frequentist hybrid random effects model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 2001-2010, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    4. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    5. Bertschek, Irene & Ohnemus, Jörg & Erdsiek, Daniel & Rammer, Christian & Andres, Raphaela & Kimpeler, Simone, 2019. "Monitoringbericht Kultur- und Kreativwirtschaft 2018," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 203157.
    6. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    7. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    8. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    9. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    10. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    11. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    12. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    13. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    14. Huixia Judy Wang & Jianhua Hu, 2011. "Identification of Differential Aberrations in Multiple-Sample Array CGH Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 353-362, June.
    15. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    16. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    17. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    18. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    19. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    20. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:987-1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.