IDEAS home Printed from https://ideas.repec.org/a/taf/ginixx/v48y2022i4p579-596.html
   My bibliography  Save this article

Using past violence and current news to predict changes in violence

Author

Listed:
  • Hannes Mueller
  • Christopher Rauh

Abstract

This article proposes a new method for predicting escalations and de-escalations of violence using a model which relies on conflict history and text features. The text features are generated from over 3.5 million newspaper articles using a so-called topic-model. We show that the combined model relies to a large extent on conflict dynamics, but that text is able to contribute meaningfully to the prediction of rare outbreaks of violence in previously peaceful countries. Given the very powerful dynamics of the conflict trap these cases are particularly important for prevention efforts.Este artículo propone un nuevo método para la predicción de escaladas y desescaladas de violencia a través de la aplicación de un modelo basado en los antecedentes del conflicto y las características propias del texto. Las características del texto se generan a partir de más de 3,5 millones de artículos de periódicos mediante el uso de lo que se denomina “modelo de tópicos”. Demostramos que, si bien este modelo combinado hace referencia a una extensa dinámica del conflicto, el texto es una contribución relevante que permite predecir los estallidos de violencia inesperados en países que antes eran pacíficos. Dada la dinámica de gran intensidad característica de la trampa del conflicto, estos casos son de especial importancia en lo que se refiere a las iniciativas de prevención.Dans cet article, nous proposons une nouvelle méthode destinée à anticiper les escalades et désescalades de violence grâce à un modèle reposant sur les antécédents conflictuels et sur des caractéristiques textuelles. Ces caractéristiques sont extraites à partir de plus de 3,5 millions d’articles de presse à l’aide d’un modèle thématique (topic model). Nous montrons que si ce modèle mixte s’appuie largement sur les dynamiques conflictuelles, les données textuelles peuvent être très utiles en vue d’anticiper les rares explosions de violence dans les pays habituellement pacifiques. Étant donné la puissante dynamique qui sous-tend les conflits récurrents, les exemples exposés revêtent une importance particulière dans une optique de prévention.

Suggested Citation

  • Hannes Mueller & Christopher Rauh, 2022. "Using past violence and current news to predict changes in violence," International Interactions, Taylor & Francis Journals, vol. 48(4), pages 579-596, July.
  • Handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:579-596
    DOI: 10.1080/03050629.2022.2063853
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03050629.2022.2063853
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03050629.2022.2063853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hannes Mueller & Christopher Rauh, 2022. "The Hard Problem of Prediction for Conflict Prevention," Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
    2. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    2. Racek, Daniel & Thurner, Paul W. & Davidson, Brittany I. & Zhu, Xiao Xiang & Kauermann, Göran, 2024. "Conflict forecasting using remote sensing data: An application to the Syrian civil war," International Journal of Forecasting, Elsevier, vol. 40(1), pages 373-391.
    3. Diakonova, Marina & Ghirelli, Corinna & Molina, Luis & Pérez, Javier J., 2023. "The economic impact of conflict-related and policy uncertainty shocks: The case of Russia," International Economics, Elsevier, vol. 174(C), pages 69-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    2. Diakonova, Marina & Ghirelli, Corinna & Molina, Luis & Pérez, Javier J., 2023. "The economic impact of conflict-related and policy uncertainty shocks: The case of Russia," International Economics, Elsevier, vol. 174(C), pages 69-90.
    3. Stoop, Nik & Verpoorten, Marijke & van der Windt, Peter, 2019. "Artisanal or industrial conflict minerals? Evidence from Eastern Congo," World Development, Elsevier, vol. 122(C), pages 660-674.
    4. Marfè, Roberto & Pénasse, Julien, 2024. "Measuring macroeconomic tail risk," Journal of Financial Economics, Elsevier, vol. 156(C).
    5. Jesús Rodríguez-López & Mario Solís-García, 2018. "Defense spending and fiscal multipliers: it's all in the variance," Working Papers 18.06, Universidad Pablo de Olavide, Department of Economics.
    6. Besley, Timothy & Fetzer, Thiemo & Mueller, Hannes, 2019. "Terror and Tourism: The Economic Consequences of Media Coverage," CAGE Online Working Paper Series 449, Competitive Advantage in the Global Economy (CAGE).
    7. Mueller, H. & Rauh, C. & Ruggieri, A., 2022. "Dynamic Early Warning and Action Model," Cambridge Working Papers in Economics 2236, Faculty of Economics, University of Cambridge.
    8. Samuel Bazzi & Robert A. Blair & Christopher Blattman & Oeindrila Dube & Matthew Gudgeon & Richard Peck, 2022. "The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 764-779, October.
    9. Lamprini Rori & Vasiliki Georgiadou & Costas Roumanias, 2022. "Political violence in Greece through the PVGR database: evidence from the far right and the far left," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 167, Hellenic Observatory, LSE.
    10. Luca Gambetti & Nicolò Maffei-Faccioli & Sarah Zoi, 2022. "Bad News, Good News: Coverage and Response Asymmetries," Working Paper 2022/8, Norges Bank.
    11. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Pérez & Elena Vidal, 2022. "Using newspapers for textual indicators: which and how many?," Working Papers 2235, Banco de España.
    12. Nicola Limodio, 2022. "Terrorism Financing, Recruitment, and Attacks," Econometrica, Econometric Society, vol. 90(4), pages 1711-1742, July.
    13. Timothy Besley & Thiemo Fetzer & Hannes Mueller, 2023. "How Big Is the Media Multiplier? Evidence from Dyadic News Data," CESifo Working Paper Series 10619, CESifo.
    14. Toke S. Aidt & Facundo Albornoz & Esther Hauk, 2019. "Foreign in influence and domestic policy: A survey," Cambridge Working Papers in Economics 1928, Faculty of Economics, University of Cambridge.
    15. Laura Battaglia & Timothy M. Christensen & Stephen Hansen & Szymon Sacher, 2024. "Inference for regression with variables generated from unstructured data," CeMMAP working papers 10/24, Institute for Fiscal Studies.
    16. Augustin TAPSOBA, 2022. "Conflict prediction using Kernel density estimation," Working Paper 258fc89a-4ec3-4eef-a0ff-7, Agence française de développement.
    17. Lite J. Nartey & Witold J. Henisz & Sinziana Dorobantu, 2023. "Reciprocity in Firm–Stakeholder Dialog: Timeliness, Valence, Richness, and Topicality," Journal of Business Ethics, Springer, vol. 183(2), pages 429-451, March.
    18. Szymon Sacher & Laura Battaglia & Stephen Hansen, 2021. "Hamiltonian Monte Carlo for Regression with High-Dimensional Categorical Data," Papers 2107.08112, arXiv.org, revised Feb 2024.
    19. Sidney Michelini & Barbora Šedová & Jacob Schewe & Katja Frieler, 2023. "Extreme weather impacts do not improve conflict predictions in Africa," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    20. Andres, Maximilian & Bruttel, Lisa & Friedrichsen, Jana, 2023. "How communication makes the difference between a cartel and tacit collusion: A machine learning approach," European Economic Review, Elsevier, vol. 152(C).

    More about this item

    JEL classification:

    • F21 - International Economics - - International Factor Movements and International Business - - - International Investment; Long-Term Capital Movements
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:579-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GINI20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.