IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v20y2017i5p519-529.html
   My bibliography  Save this article

A model of neurovascular coupling and the BOLD response PART II

Author

Listed:
  • E. J. Mathias
  • M. J. Plank
  • T. David

Abstract

A mathematical model is developed which describes a signalling mechanism of neurovascular coupling with a model of a pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers (Part I) we described the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We showed that this produced a viable signal in terms of initial dip, positive and negative BOLD signals. In this paper (PART II) our model predicts the variations of the BOLD response due to variations in neuronal activity and indicates that the BOLD signal could be used as an initial biomarker for neuronal dysfunction or variations in the perfusion of blood to the cerebral tissue. We have compared the simulated hypoxic BOLD response to experimental BOLD signals observed in the hippocampus during hypoxia showing good agreement. This approach of combined quantitative modelling of neurovascular coupling response and its BOLD response will enable more specific assessment of a brain region.

Suggested Citation

  • E. J. Mathias & M. J. Plank & T. David, 2017. "A model of neurovascular coupling and the BOLD response PART II," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(5), pages 519-529, April.
  • Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:5:p:519-529
    DOI: 10.1080/10255842.2016.1255733
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2016.1255733
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2016.1255733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Attwell & Alastair M. Buchan & Serge Charpak & Martin Lauritzen & Brian A. MacVicar & Eric A. Newman, 2010. "Glial and neuronal control of brain blood flow," Nature, Nature, vol. 468(7321), pages 232-243, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marine Tournissac & Emmanuelle Chaigneau & Sonia Pfister & Ali-Kemal Aydin & Yannick Goulam Houssen & Philip O’Herron & Jessica Filosa & Mayeul Collot & Anne Joutel & Serge Charpak, 2024. "Neurovascular coupling and CO2 interrogate distinct vascular regulations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Patrick S. Hosford & Jack A. Wells & Shereen Nizari & Isabel N. Christie & Shefeeq M. Theparambil & Pablo A. Castro & Anna Hadjihambi & L. Felipe Barros & Iván Ruminot & Mark F. Lythgoe & Alexander V., 2022. "CO2 signaling mediates neurovascular coupling in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Xin Rui Lim & Mohammad M. Abd-Alhaseeb & Michael Ippolito & Masayo Koide & Amanda J. Senatore & Curtis Plante & Ashwini Hariharan & Nick Weir & Thomas A. Longden & Kathryn A. Laprade & James M. Staffo, 2024. "Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Minhui Ouyang & John A. Detre & Jessica L. Hyland & Kay L. Sindabizera & Emily S. Kuschner & J. Christopher Edgar & Yun Peng & Hao Huang, 2024. "Spatiotemporal cerebral blood flow dynamics underlies emergence of the limbic-sensorimotor-association cortical gradient in human infancy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Shashank Shekhar & Shaoxun Wang & Paige N Mims & Ezekiel Gonzalez-Fernandez & Chao Zhang & Xiaochen He & Catherine Y Liu & Wenshan Lv & Yangang Wang & Juebin Huang & Fan Fan, 2017. "Impaired Cerebral Autoregulation-A Common Neurovascular Pathway in Diabetes may Play a Critical Role in Diabetes-Related Alzheimers Disease," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 2(3), pages 40-45, June.
    6. William A. Mills & AnnaLin M. Woo & Shan Jiang & Joelle Martin & Dayana Surendran & Matthew Bergstresser & Ian F. Kimbrough & Ukpong B. Eyo & Michael V. Sofroniew & Harald Sontheimer, 2022. "Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Domenic H. Cerri & Daniel L. Albaugh & Lindsay R. Walton & Brittany Katz & Tzu-Wen Wang & Tzu-Hao Harry Chao & Weiting Zhang & Randal J. Nonneman & Jing Jiang & Sung-Ho Lee & Amit Etkin & Catherine N., 2024. "Distinct neurochemical influences on fMRI response polarity in the striatum," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Nicole Haack & Pavel Dublin & Christine R Rose, 2014. "Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    9. Shashank Shekhar & Shaoxun Wang & Paige N Mims & Ezekiel Gonzalez-Fernandez & Chao Zhang & Xiaochen He & Catherine Y Liu & Wenshan Lv & Yangang Wang & Juebin Huang & Fan Fan, 2017. "Impaired Cerebral Autoregulation-A Common Neurovascular Pathway in Diabetes may Play a Critical Role in Diabetes-Related Alzheimer’s Disease," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 2(3), pages 1-6, June.
    10. Yu, Yangyang & Yuan, Zhixuan & Li, Jiajia & Wu, Ying, 2023. "Dynamic analysis of epileptic seizures caused by energy failure after ischemic stroke," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Rita Gil & Mafalda Valente & Noam Shemesh, 2024. "Rat superior colliculus encodes the transition between static and dynamic vision modes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:20:y:2017:i:5:p:519-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.