IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v18y2015i6p583-591.html
   My bibliography  Save this article

Modelling organelle transport after traumatic axonal injury

Author

Listed:
  • I.A. Kuznetsov
  • A.V. Kuznetsov

Abstract

This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.

Suggested Citation

  • I.A. Kuznetsov & A.V. Kuznetsov, 2015. "Modelling organelle transport after traumatic axonal injury," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(6), pages 583-591, April.
  • Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:6:p:583-591
    DOI: 10.1080/10255842.2013.820721
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2013.820721
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2013.820721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.V. Kuznetsov, 2010. "Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(6), pages 711-722.
    2. Bernard M A G Piette & Junli Liu & Kasper Peeters & Andrei Smertenko & Timothy Hawkins & Michael Deeks & Roy Quinlan & Wojciech J Zakrzewski & Patrick J Hussey, 2009. "A Thermodynamic Model of Microtubule Assembly and Disassembly," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-11, August.
    3. N. J. Carter & R. A. Cross, 2005. "Mechanics of the kinesin step," Nature, Nature, vol. 435(7040), pages 308-312, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James F. Cass & Hermes Bloomfield-Gadêlha, 2023. "The reaction-diffusion basis of animated patterns in eukaryotic flagella," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. A. Kuznetsov, 2012. "Modelling transport of layered double hydroxide nanoparticles in axons and dendrites of cortical neurons," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(12), pages 1263-1271.
    3. Zhang, Yunxin, 2009. "A general two-cycle network model of molecular motors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3465-3474.
    4. Chou, Y.C. & Hsiao, Yi-Feng & To, Kiwing, 2015. "Dynamic model of the force driving kinesin to move along microtubule—Simulation with a model system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 66-73.
    5. Peter Keller & Sylvie Rœlly & Angelo Valleriani, 2015. "A Quasi Random Walk to Model a Biological Transport Process," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 125-137, March.
    6. Lipowsky, Reinhard & Chai, Yan & Klumpp, Stefan & Liepelt, Steffen & Müller, Melanie J.I., 2006. "Molecular motor traffic: From biological nanomachines to macroscopic transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 34-51.
    7. Hao Wu & Yiyu Chen & Wenlong Xu & Chen Xin & Tao Wu & Wei Feng & Hao Yu & Chao Chen & Shaojun Jiang & Yachao Zhang & Xiaojie Wang & Minghui Duan & Cong Zhang & Shunli Liu & Dawei Wang & Yanlei Hu & Ji, 2023. "High-performance Marangoni hydrogel rotors with asymmetric porosity and drag reduction profile," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. A.V. Kuznetsov, 2014. "Sorting of cargos between axons and dendrites: modelling of differences in cargo transport in these two types of neurites," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(7), pages 792-799, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:18:y:2015:i:6:p:583-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.