IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v6y2000i2p240-258.html
   My bibliography  Save this article

Analysing long memory and asymmetries

Author

Listed:
  • Matti Vir

Abstract

The paper presents evidence on nonlinearities in Finnish financial time series. The analysis concentrates on the so-called long-memory property which is examined using, various alternative test procedures. This analysis makes use of relatively long monthly Finnish time series which cover the period 1922-1996. The results give some evidence on long memory but one cannot say that the results would overwhelmingly support the existence of long memory in Finnish time series. There are, however, considerable differences between variables and the results are quite sensitive in terms of the treatment of short memory which also applies to different ways of prefiltering the data. Clearly more work is required to obtain more affirmative results in this respect. One way, of doing that is to apply asymmetric time models to find the source of nonlinearity. When that is done with the Finnish data some weak evidence on asymmetry is obtained.

Suggested Citation

  • Matti Vir, 2000. "Analysing long memory and asymmetries," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 240-258.
  • Handle: RePEc:taf:eurjfi:v:6:y:2000:i:2:p:240-258
    DOI: 10.1080/13518470050020860
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470050020860
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470050020860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hess, Gregory D. & Iwata, Shigeru, 1997. "Asymmetric persistence in GDP? A deeper look at depth," Journal of Monetary Economics, Elsevier, vol. 40(3), pages 535-554, December.
    2. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. Gerard A. Pfann & Franz C. Palm, 1993. "Asymmetric Adjustment Costs in Non-linear Labour Demand Models for the Netherlands and U.K. Manufacturing Sectors," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(2), pages 397-412.
    5. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    6. Takala, Kari & Viren, Matti, 1996. "Chaos and nonlinear dynamics in financial and nonfinancial time series: Evidence from Finland," European Journal of Operational Research, Elsevier, vol. 93(1), pages 155-172, August.
    7. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    8. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    9. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    10. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    2. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
    2. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    3. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    4. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    5. Alexander Ayertey Odonkor & Emmanuel Nkrumah Ababio & Emmanuel Amoah- Darkwah & Richard Andoh, 2022. "Stock Returns and Long-range Dependence," Global Business Review, International Management Institute, vol. 23(1), pages 37-47, February.
    6. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    7. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    8. David G. McMillan & Pako Thupayagale, 2009. "The efficiency of African equity markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 275-292, October.
    9. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    10. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    11. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    12. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.
    13. Kim Liow, 2009. "Long-term Memory in Volatility: Some Evidence from International Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 39(4), pages 415-438, November.
    14. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    16. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    18. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    19. Matthieu Garcin & Martino Grasselli, 2022. "Long versus short time scales: the rough dilemma and beyond," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 257-278, June.
    20. B. Verspagen & G. Silverberg, 2000. "A note on Michelacci and Zaffaroni, long memory, and time series of economic growth," Working Papers 00.17, Eindhoven Center for Innovation Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:6:y:2000:i:2:p:240-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.