IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v27y2021i6p564-595.html
   My bibliography  Save this article

Bitcoin option pricing with a SETAR-GARCH model

Author

Listed:
  • Tak Kuen Siu
  • Robert J. Elliott

Abstract

This paper aims to study the pricing of Bitcoin options with a view to incorporating both conditional heteroscedasticity and regime switching in Bitcoin returns. Specifically, a nonlinear time series model combining both the self-exciting threshold autoregressive (SETAR) model and the generalized autoregressive conditional heteroscedastic (GARCH) model is adopted for modeling Bitcoin return dynamics. Specifically, the SETAR model is used to model regime switching and the Heston-Nandi GARCH model is adopted to model conditional heteroscedasticity. Both the conditional Esscher transform and the variance-dependent pricing kernel are used to specify pricing kernels. Numerical studies on the Bitcoin option prices using real bitcoins data are presented.

Suggested Citation

  • Tak Kuen Siu & Robert J. Elliott, 2021. "Bitcoin option pricing with a SETAR-GARCH model," The European Journal of Finance, Taylor & Francis Journals, vol. 27(6), pages 564-595, April.
  • Handle: RePEc:taf:eurjfi:v:27:y:2021:i:6:p:564-595
    DOI: 10.1080/1351847X.2020.1828962
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2020.1828962
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2020.1828962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Cretarola & Gianna Figà-Talamanca & Cyril Grunspan, 2021. "Blockchain and cryptocurrencies: economic and financial research," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 781-787, December.
    2. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. F. Leung & M. Law & S. K. Djeng, 2024. "Deterministic modelling of implied volatility in cryptocurrency options with underlying multiple resolution momentum indicator and non-linear machine learning regression algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    4. Ao Shu & Feiyang Cheng & Jianlei Han & Zini Liang & Zheyao Pan, 2023. "Arbitrage across different Bitcoin exchange venues: Perspectives from investor base and market related events," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5183-5210, December.
    5. Brini, Alessio & Lenz, Jimmie, 2024. "Pricing cryptocurrency options with machine learning regression for handling market volatility," Economic Modelling, Elsevier, vol. 136(C).
    6. Kuo-Shing Chen & Yu-Chuan Huang, 2021. "Detecting Jump Risk and Jump-Diffusion Model for Bitcoin Options Pricing and Hedging," Mathematics, MDPI, vol. 9(20), pages 1-24, October.
    7. Alexander, Carol & Deng, Jun & Feng, Jianfen & Wan, Huning, 2023. "Net buying pressure and the information in bitcoin option trades," Journal of Financial Markets, Elsevier, vol. 63(C).
    8. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    9. Tak Kuen Siu, 2024. "Bayesian Lower and Upper Estimates for Ether Option Prices with Conditional Heteroscedasticity and Model Uncertainty," JRFM, MDPI, vol. 17(10), pages 1-32, September.
    10. Pierre J. Venter & Eben Maré, 2021. "Univariate and Multivariate GARCH Models Applied to Bitcoin Futures Option Pricing," JRFM, MDPI, vol. 14(6), pages 1-14, June.
    11. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of Inverse options under stochastic volatility models," Papers 2401.00539, arXiv.org, revised Sep 2024.
    12. Tak Kuen Siu, 2023. "Bayesian nonlinear expectation for time series modelling and its application to Bitcoin," Empirical Economics, Springer, vol. 64(1), pages 505-537, January.
    13. Carol Alexander & Ding Chen & Arben Imeraj, 2021. "Inverse and Quanto Inverse Options in a Black-Scholes World," Papers 2107.12041, arXiv.org, revised Oct 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:27:y:2021:i:6:p:564-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.