IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v15y2009i4p437-444.html
   My bibliography  Save this article

Forecasting the weekly time-varying beta of UK firms: GARCH models vs. Kalman filter method

Author

Listed:
  • Taufiq Choudhry
  • Hao Wu

Abstract

This paper investigates the forecasting ability of three different Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models and the Kalman filter method. The three GARCH models applied are: bivariate GARCH, BEKK GARCH, and GARCH-GJR. Forecast errors based on 20 UK company's weekly stock return (based on time-varying beta) forecasts are employed to evaluate the out-of-sample forecasting ability of both the GARCH models and the Kalman method. Measures of forecast errors overwhelmingly support the Kalman filter approach. Among the GARCH models, GJR appears to provide somewhat more accurate forecasts than the two other GARCH models.

Suggested Citation

  • Taufiq Choudhry & Hao Wu, 2009. "Forecasting the weekly time-varying beta of UK firms: GARCH models vs. Kalman filter method," The European Journal of Finance, Taylor & Francis Journals, vol. 15(4), pages 437-444.
  • Handle: RePEc:taf:eurjfi:v:15:y:2009:i:4:p:437-444
    DOI: 10.1080/13518470802604499
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470802604499
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470802604499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Robert D. Brooks & Robert W. Faff & Michael D. McKenzie, 1998. "Time†Varying Beta Risk of Australian Industry Portfolios: A Comparison of Modelling Techniques," Australian Journal of Management, Australian School of Business, vol. 23(1), pages 1-22, June.
    3. Dimson, Elroy & Marsh, Paul, 1990. "Volatility forecasting without data-snooping," Journal of Banking & Finance, Elsevier, vol. 14(2-3), pages 399-421, August.
    4. R.W. Faff & R.D. Brooks, 1998. "Time‐varying Beta Risk for Australian Industry Portfolios: An Exploratory Analysis," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(5‐6), pages 721-745, June.
    5. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    8. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    9. Bodurtha, James N, Jr & Mark, Nelson C, 1991. "Testing the CAPM with Time-Varying Risks and Returns," Journal of Finance, American Finance Association, vol. 46(4), pages 1485-1505, September.
    10. Conrad, Jennifer & Gultekin, Mustafa N & Kaul, Gautam, 1991. "Asymmetric Predictability of Conditional Variances," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 597-622.
    11. Robert W. Faff & David Hillier & Joseph Hillier, 2000. "Time Varying Beta Risk: An Analysis of Alternative Modelling Techniques," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 27(5‐6), pages 523-554, June.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    14. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    15. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    2. Sibel Celik, 2013. "Testing the Stability of Beta: A Sectoral Analysis in Turkish Stock Market," Journal of Economics and Behavioral Studies, AMH International, vol. 5(1), pages 18-23.
    3. Bai, Ye & Green, Christopher J., 2020. "Country and industry factors in tests of Capital Asset Pricing Models for partially integrated emerging markets," Economic Modelling, Elsevier, vol. 92(C), pages 180-194.
    4. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    5. Kurach, Radosław & Stelmach, Jerzy, 2014. "Time-Varying Behaviour of Sector Beta Risk – The Case of Poland," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 139-159, March.
    6. Imran Umer Chhapra & Muhammad Kashif, 2019. "Higher Co-Moments and Downside Beta in Asset Pricing," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 15(1), pages 129-155.
    7. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    8. Serdar Neslihanoglu & Stelios Bekiros & John McColl & Duncan Lee, 2021. "Multivariate time-varying parameter modelling for stock markets," Empirical Economics, Springer, vol. 61(2), pages 947-972, August.
    9. Zhou, Jian, 2013. "Conditional market beta for REITs: A comparison of modeling techniques," Economic Modelling, Elsevier, vol. 30(C), pages 196-204.
    10. Ortas, Eduardo & Moneva, José M., 2013. "The Clean Techs equity indexes at stake: Risk and return dynamics analysis," Energy, Elsevier, vol. 57(C), pages 259-269.
    11. Ding, Shusheng & Cui, Tianxiang & Wu, Xiangling & Du, Min, 2022. "Supply chain management based on volatility clustering: The effect of CBDC volatility," Research in International Business and Finance, Elsevier, vol. 62(C).
    12. Ewa Feder-Sempach & Piotr Szczepocki & Wiesław Dębski, 2023. "What if beta is not stable? Applying the Kalman filter to risk estimates of top US companies over the long time horizon," Bank i Kredyt, Narodowy Bank Polski, vol. 54(1), pages 25-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taufiq Choudhry & Hao Wu, 2008. "Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying beta," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 670-689.
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. de Goeij, Peter & Marquering, Wessel, 2009. "Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 318-329, March.
    6. Kim, Dongcheol & Kon, Stanley J., 1999. "Structural change and time dependence in models of stock returns," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 283-308, September.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    9. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    10. Hisham Al Refai & Gazi Mainul Hassan, 2018. "The Impact of Market-wide Volatility on Time-varying Risk: Evidence from Qatar Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 239-258, August.
    11. Асатуров К.Г., 2015. "Динамические Модели Систематического Риска: Сравнение На Примере Индийского Фондового Рынка," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 51(4), pages 59-75, октябрь.
    12. Kirt Butler & Katsushi Okada, 2007. "Bivariate and higher-order terms in models of international equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 725-737.
    13. Ferreira, Miguel A., 2005. "Forecasting the comovements of spot interest rates," Journal of International Money and Finance, Elsevier, vol. 24(5), pages 766-792, September.
    14. Patricia Chelley-Steeley & James Steeley, 2005. "The leverage effect in the UK stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 15(6), pages 409-423.
    15. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
    16. Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
    17. Marshall, Andrew & Maulana, Tubagus & Tang, Leilei, 2009. "The estimation and determinants of emerging market country risk and the dynamic conditional correlation GARCH model," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 250-259, December.
    18. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    19. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    20. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:15:y:2009:i:4:p:437-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.