IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v35y2016i7p1317-1342.html
   My bibliography  Save this article

Evidence of Convergence Clubs Using Mixture Models

Author

Listed:
  • Maria Grazia Pittau
  • Roberto Zelli
  • Riccardo Massari

Abstract

Cross-country economic convergence has been increasingly investigated by finite mixture models. Multiple components in a mixture reflect groups of countries that converge locally. Testing for the number of components is crucial for detecting “convergence clubs.” To assess the number of components of the mixture, we propose a sequential procedure that compares the shape of the hypothesized mixture distribution with the true unknown density, consistently estimated through a kernel estimator. The novelty of our approach is its capability to select the number of components along with a satisfactory fitting of the model. Simulation studies and an empirical application to per capita income distribution across countries testify for the good performance of our approach. A three-clubs convergence seems to emerge.

Suggested Citation

  • Maria Grazia Pittau & Roberto Zelli & Riccardo Massari, 2016. "Evidence of Convergence Clubs Using Mixture Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1317-1342, August.
  • Handle: RePEc:taf:emetrv:v:35:y:2016:i:7:p:1317-1342
    DOI: 10.1080/07474938.2014.977062
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2014.977062
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2014.977062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Johnson & Chris Papageorgiou, 2020. "What Remains of Cross-Country Convergence?," Journal of Economic Literature, American Economic Association, vol. 58(1), pages 129-175, March.
    2. Maria Grazia Pittau & Roberto Zelli, 2017. "At the roots of Gini’s transvariation: extracts from “Il concetto di transvariazione e le sue prime applicazioni”," METRON, Springer;Sapienza Università di Roma, vol. 75(2), pages 127-140, August.
    3. Mendez-Guerra, Carlos, 2017. "Convergence Clubs Beyond GDP: A Non-Parametric Density Approach," MPRA Paper 82048, University Library of Munich, Germany.
    4. Mendez, Carlos, 2019. "Regional Efficiency Dispersion, Convergence, and Efficiency Clusters: Evidence from the Provinces of Indonesia 1990-2010," MPRA Paper 95972, University Library of Munich, Germany.
    5. Yan, Cheng & Cheng, Tingting, 2019. "In search of the optimal number of fund subgroups," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 78-92.
    6. Carlos Mendez, 2019. "Lack of Global Convergence and the Formation of Multiple Welfare Clubs across Countries: An Unsupervised Machine Learning Approach," Economies, MDPI, vol. 7(3), pages 1-17, July.
    7. Carlos Mendez, 2020. "Regional efficiency convergence and efficiency clusters," Asia-Pacific Journal of Regional Science, Springer, vol. 4(2), pages 391-411, June.
    8. Nartikoev, Alan & Peresetsky, Anatoly, 2020. "Эндогенная Классификация Домохозяйств В Регионах России [Endogenous household classification: Russian regions]," MPRA Paper 104351, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    2. Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.
    3. Park, Seong C. & Brorsen, B. Wade & Stoecker, Arthur L. & Hattey, Jeffory A., 2012. "Forage Response to Swine Effluent: A Cox Nonnested Test of Alternative Functional Forms Using a Fast Double Bootstrap," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 44(4), pages 593-606, November.
    4. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    5. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    6. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    7. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    8. Geert Soete & Wayne DeSarbo, 1991. "A latent class probit model for analyzing pick any/N data," Journal of Classification, Springer;The Classification Society, vol. 8(1), pages 45-63, January.
    9. Priebe, Carey E. & Miller, Michael I. & Tilak Ratnanather, J., 2006. "Segmenting magnetic resonance images via hierarchical mixture modelling," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 551-567, January.
    10. Maria Grazia Pittau, 2005. "Fitting Regional Income Distributions in the European Union," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(2), pages 135-161, April.
    11. Gray, H. L. & Baek, J. & Woodward, W. A. & Miller, J. & Fisk, M., 1996. "A bootstrap generalized likelihood ratio test in discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 22(2), pages 137-158, July.
    12. Christopher J. Rook, 2017. "Multivariate Density Modeling for Retirement Finance," Papers 1709.04070, arXiv.org.
    13. Robert Kaplon, 2009. "Prior distributions for Bayes factors and latent class model selection," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 3, pages 87-94.
    14. Beard, T. Randolph & Caudill, Steven B. & Gropper, Daniel M., 1997. "The diffusion of production processes in the U.S. banking industry: A finite mixture approach," Journal of Banking & Finance, Elsevier, vol. 21(5), pages 721-740, May.
    15. repec:jss:jstsof:04:i02 is not listed on IDEAS
    16. Williams, John & Temme, Dirk & Hildebrandt, Lutz, 2002. "A Monte Carlo study of structural equation models for finite mixtures," SFB 373 Discussion Papers 2002,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Lo, Yungtai, 2005. "Likelihood ratio tests of the number of components in a normal mixture with unequal variances," Statistics & Probability Letters, Elsevier, vol. 71(3), pages 225-235, March.
    18. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    19. Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
    20. Pittau, Maria Grazia & Zelli, Roberto & Johnson, Paul, "undated". "Mixture Models and Convergence Clubs," Vassar College Department of Economics Working Paper Series 91, Vassar College Department of Economics.
    21. Cecilia M. S. Ma, 2018. "A Latent Profile Analysis of Internet use and Its Association with Psychological Well-Being Outcomes among Hong Kong Chinese Early Adolescents," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 13(3), pages 727-743, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:35:y:2016:i:7:p:1317-1342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.