Inference of the Trend in a Partially Linear Model with Locally Stationary Regressors
Author
Abstract
Suggested Citation
DOI: 10.1080/07474938.2014.976530
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Andrés González & Kirstin Hubrich & Timo Teräsvirta, 2009.
"Forecasting inflation with gradual regime shifts and exogenous information,"
CREATES Research Papers
2009-03, Department of Economics and Business Economics, Aarhus University.
- Hubrich, Kirstin & González, Andrés & Teräsvirta, Timo, 2011. "Forecasting inflation with gradual regime shifts and exogenous information," Working Paper Series 1363, European Central Bank.
- Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
- Čížek, Pavel & Koo, Chao Hui, 2021.
"Jump-preserving varying-coefficient models for nonlinear time series,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Discussion Paper 2017-017, Tilburg University, Center for Economic Research.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Other publications TiSEM c849e96f-3ad1-461e-96c6-f, Tilburg University, School of Economics and Management.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Likai Chen & Ekaterina Smetanina & Wei Biao Wu, 2022. "Estimation of nonstationary nonparametric regression model with multiplicative structure [Income and wealth distribution in macroeconomics: A continuous-time approach]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 176-214.
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- Oliver Linton & Michael Vogt, 2012. "Nonparametric estimation of a periodic sequence in the presence of a smooth trend," CeMMAP working papers 23/12, Institute for Fiscal Studies.
- Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
- Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
- Chen, Jia & Li, Degui & Linton, Oliver, 2019.
"A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
- Chen, J. & Li, D. & Linton, O., 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Cambridge Working Papers in Economics 1876, Faculty of Economics, University of Cambridge.
- Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017.
"Quantile spectral analysis for locally stationary time series,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
- Stefan Skowronek & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2014. "Quantile Spectral Analysis for Locally Stationary Time Series," Working Papers ECARES ecares 2014-24, ULB -- Universite Libre de Bruxelles.
- Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2015. "Quantile Spectral Analysis for Locally Stationary Time Series," Working Papers ECARES ECARES 2015-27, ULB -- Universite Libre de Bruxelles.
- Liu, Weiqiang, 2023. "A consistent nonparametric test for the structure change in quantile regression," Economics Letters, Elsevier, vol. 228(C).
- Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
- Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
- Holt, Matthew T. & Teräsvirta, Timo, 2020.
"Global hemispheric temperatures and co-shifting: A vector shifting-mean autoregressive analysis,"
Journal of Econometrics, Elsevier, vol. 214(1), pages 198-215.
- Matthew T. Holt & Timo Teräsvirta, 2017. "Global Hemispheric Temperatures and Co–Shifting: A Vector Shifting–Mean Autoregressive Analysis," CREATES Research Papers 2017-05, Department of Economics and Business Economics, Aarhus University.
- Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
- Guillermo Ferreira & Jorge Mateu & Jose A. Vilar & Joel Muñoz, 2021. "Bootstrapping regression models with locally stationary disturbances," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 341-363, June.
- Alebachew Abebe & Aboma Temesgen & Belete Kebede, 2023. "Modeling inflation rate factors on present consumption price index in Ethiopia: threshold autoregressive models approach," Future Business Journal, Springer, vol. 9(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:35:y:2016:i:7:p:1194-1220. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.