IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v30y2011i2p154-172.html
   My bibliography  Save this article

Robust Misspecification Tests for the Heckman's Two-Step Estimator

Author

Listed:
  • Gabriel Montes-Rojas

Abstract

This article constructs and evaluates Lagrange multiplier (LM) and Neyman's C(α) tests based on bivariate Edgeworth series expansions for the consistency of the Heckman's two-step estimator in sample selection models, that is, for marginal normality and linearity of the conditional expectation of the error terms. The proposed tests are robust to local misspecification in nuisance distributional parameters. Monte Carlo results show that testing marginal normality and linearity of the conditional expectations separately have a better size performance than testing bivariate normality. Moreover, the robust variants of the tests have better empirical size than nonrobust tests, which determines that these tests can be successfully applied to detect specific departures from the null model of bivariate normality. Finally, the tests are applied to women's labor supply data.

Suggested Citation

  • Gabriel Montes-Rojas, 2011. "Robust Misspecification Tests for the Heckman's Two-Step Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 154-172.
  • Handle: RePEc:taf:emetrv:v:30:y:2011:i:2:p:154-172
    DOI: 10.1080/07474938.2011.534035
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474938.2011.534035
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2011.534035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-328, May.
    3. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
    4. Jaggia, Sanjiv & Trivedi, Pravin K., 1994. "Joint and separate score tests for state dependence and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 273-291.
    5. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    6. Bera, Anil K. & Yoon, Mann J., 1993. "Specification Testing with Locally Misspecified Alternatives," Econometric Theory, Cambridge University Press, vol. 9(4), pages 649-658, August.
    7. Lung-Fei Lee, 1982. "Some Approaches to the Correction of Selectivity Bias," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 355-372.
    8. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    9. Bera, Anil K & Jarque, Carlos M & Lee, Lung-Fei, 1984. "Testing the Normality Assumption in Limited Dependent Variable Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 563-578, October.
    10. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    11. James Heckman & Justin L. Tobias & Edward Vytlacil, 2003. "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 748-755, August.
    12. Lee, Lung-Fei, 1984. "Tests for the Bivariate Normal Distribution in Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 52(4), pages 843-863, July.
    13. Bera, A. & John, S., 1983. "Tests for multivariate normality with Pearson alternatives," LIDAM Reprints CORE 534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo LUCCHETTI & Claudia PIGINI, 2011. "Conditional Moment Tests for Normality in Bivariate Limited Dependent Variable Models: a Monte Carlo Study," Working Papers 357, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    2. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    3. Claudia PIGINI, 2012. "Of Butterflies and Caterpillars: Bivariate Normality in the Sample Selection Model," Working Papers 377, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Michael Pfaffermayr, 2014. "A GMM-Based Test for Normal Disturbances of the Heckman Sample Selection Model," Econometrics, MDPI, vol. 2(4), pages 1-18, October.
    5. Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
    6. Seonho Shin, 2022. "To work or not? Wages or subsidies?: Copula-based evidence of subsidized refugees’ negative selection into employment," Empirical Economics, Springer, vol. 63(4), pages 2209-2252, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cty:dpaper:10.1080/07474938.2011.534035 is not listed on IDEAS
    2. repec:cty:dpaper:1479 is not listed on IDEAS
    3. Pigini Claudia, 2015. "Bivariate Non-Normality in the Sample Selection Model," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 123-144, January.
    4. Joo, Joonhwi & LaLonde, Robert J., 2014. "Testing for Selection Bias," IZA Discussion Papers 8455, Institute of Labor Economics (IZA).
    5. Avinno Faruk, 2021. "Analysing the glass ceiling and sticky floor effects in Bangladesh: evidence, extent and elements," SN Business & Economics, Springer, vol. 1(9), pages 1-23, September.
    6. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    7. Angrist, Joshua D., 1997. "Conditional independence in sample selection models," Economics Letters, Elsevier, vol. 54(2), pages 103-112, February.
    8. Chen, Heng & Fan, Yanqin & Wu, Jisong, 2014. "A flexible parametric approach for estimating switching regime models and treatment effect parameters," Journal of Econometrics, Elsevier, vol. 181(2), pages 77-91.
    9. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    10. Claudia PIGINI, 2012. "Of Butterflies and Caterpillars: Bivariate Normality in the Sample Selection Model," Working Papers 377, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    11. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    12. Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
    13. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    14. Stern, Steven, 1996. "Semiparametric estimates of the supply and demand effects of disability on labor force participation," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 49-70.
    15. Katrin Hussinger, 2008. "R&D and subsidies at the firm level: an application of parametric and semiparametric two-step selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 729-747.
    16. Mroz, Thomas A., 1999. "Discrete factor approximations in simultaneous equation models: Estimating the impact of a dummy endogenous variable on a continuous outcome," Journal of Econometrics, Elsevier, vol. 92(2), pages 233-274, October.
    17. Chen, Songnian, 1997. "Semiparametric estimation of the Type-3 Tobit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 1-34, September.
    18. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    19. Gabriele Ruiu, 2014. "The Role of Trust in Determining the Propensity to Join Unofficial Strikes," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 8(3), pages 125-148, December.
    20. Marco Francesconi & Cheti Nicoletti, 2006. "Intergenerational mobility and sample selection in short panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1265-1293, December.
    21. Stefano Puddu & Andreas Waelchli, 2015. "TAF Effect on Liquidity Risk Exposure," IRENE Working Papers 15-07, IRENE Institute of Economic Research.
    22. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:30:y:2011:i:2:p:154-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.