IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v20y2001i3p353-367.html
   My bibliography  Save this article

Density Estimation For Clustered Data

Author

Listed:
  • Robert Breunig

Abstract

The commonly used survey technique of clustering introduces dependence into sample data. Such data is frequently used in economic analysis, though the dependence induced by the sample structure of the data is often ignored. In this paper, the effect of clustering on the non-parametric, kernel estimate of the density, f(x), is examined. The window width commonly used for density estimation for the case of i.i.d. data is shown to no longer be optimal. A new optimal bandwidth using a higher-order kernel is proposed and is shown to give a smaller integrated mean squared error than two window widths which are widely used for the case of i.i.d. data. Several illustrations from simulation are provided.

Suggested Citation

  • Robert Breunig, 2001. "Density Estimation For Clustered Data," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 353-367.
  • Handle: RePEc:taf:emetrv:v:20:y:2001:i:3:p:353-367
    DOI: 10.1081/ETC-100104939
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-100104939
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1081/ETC-100104939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    2. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    2. David Gunawan & William Griffths & Anatasios Panagiotelis and Duangkamon Chotikapanich, 2017. "Bayesian Weighted Inference from Surveys "Abstract: Data from large surveys are often supplemented with sampling weights that are designed to reflect unequal probabilities of response and selecti," Department of Economics - Working Papers Series 2030, The University of Melbourne.
    3. Sayed A. Mostafa & Ibrahim A. Ahmad, 2019. "Kernel density estimation from complex surveys in the presence of complete auxiliary information," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 295-338, April.
    4. Breunig, Robert, 2008. "Nonparametric density estimation for stratified samples," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2194-2200, October.
    5. Daniel J. Henderson & Christopher F. Parmeter & R. Robert Russell, 2008. "Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 607-638.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    2. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    3. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    4. Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
    5. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    6. Néstor Duch-Brown & José García-Quevedo & Daniel Montolio, 2011. "The link between public support and private R&D effort: What is the optimal subsidy?," Working Papers XREAP2011-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    7. Austan Goolsbee & David B. Gross, 1997. "Estimating Adjustment Costs with Data on Heterogeneous Capital Goods," NBER Working Papers 6342, National Bureau of Economic Research, Inc.
    8. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639, December.
    9. Das, J.W.M. & Dominitz, J. & van Soest, A.H.O., 1997. "Comparing Predictions and Outcomes : Theory and Application to Income Changes," Other publications TiSEM 6eef11dd-0ae4-4673-b8c0-2, Tilburg University, School of Economics and Management.
    10. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    11. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Townsend, John P. & Brorsen, B. Wade, 2000. "Cost Of Forward Contracting Hard Red Winter Wheat," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(1), pages 1-6, April.
    13. Simon J. Evenett & Wolfgang Keller, 2002. "On Theories Explaining the Success of the Gravity Equation," Journal of Political Economy, University of Chicago Press, vol. 110(2), pages 281-316, April.
    14. J. B. Engberg & T. Kim, "undated". "Person or Place? Parametric and semiparametric estimates of intrametropolitan earnings variation," Institute for Research on Poverty Discussion Papers 1089-96, University of Wisconsin Institute for Research on Poverty.
    15. Blow, Laura & Crawford, Ian, 2002. "A nonparametric method for valuing new goods," Working Paper Series 143, European Central Bank.
    16. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    17. Jean-Yves Duclos & Paul Makdissi & Abdelkrim Araar, 2009. "Pro-Poor Tax reforms, with an Application to Mexico," Working Papers 0907E, University of Ottawa, Department of Economics.
    18. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    19. Yun, Myeong-Su, 1999. "Generalized Selection Bias and The Decomposition of Wage Differentials," IZA Discussion Papers 69, Institute of Labor Economics (IZA).
    20. Richard Blundell & Frank Windmeijer, 2000. "Identifying demand for health resources using waiting times information," Health Economics, John Wiley & Sons, Ltd., vol. 9(6), pages 465-474, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:20:y:2001:i:3:p:353-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.