IDEAS home Printed from https://ideas.repec.org/p/acb/cbeeco/2005-459.html
   My bibliography  Save this paper

Nonparametric Density Estimation for Stratified Samples

Author

Listed:
  • Robert Breunig

Abstract

In this paper, we consider the non-parametric, kernel estimate of the density, f(x), for data drawn from stratified samples. Much of the data used by social scientists is gathered in some type of complex survey violating the usual assumptions of independently and identically distributed data. Such effects induced by the survey structure are rarely considered in the literature on non-parametric density estimation, yet they may have serious consequences for our analysis, as shown in this paper. A weighted estimator is developed which provides asymptotically unbiased density estimation for stratified samples. A data-based method for choosing the optimal bandwidth is suggested, using information on withinstratum variances and means. The weighted estimator and proposed bandwidth are shown to give smaller mean squared error for stratified samples than an un-weighted estimator and a commonly used method of choosing the bandwidth. Surprisingly, the single bandwidth outperforms optimally choosing stratum-specific bandwidths in some cases. Several illustrations from simulation are provided. We also show that the optimal sampling scheme in this case is always stratified sampling proportional to size, irrespective of the stratum-specific densities

Suggested Citation

  • Robert Breunig, 2001. "Nonparametric Density Estimation for Stratified Samples," ANU Working Papers in Economics and Econometrics 2005-459, Australian National University, College of Business and Economics, School of Economics, revised Nov 2005.
  • Handle: RePEc:acb:cbeeco:2005-459
    as

    Download full text from publisher

    File URL: https://www.cbe.anu.edu.au/researchpapers/econ/wp459.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, September.
    2. Robert Breunig, 2001. "Density Estimation For Clustered Data," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 353-367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel J. Henderson & Christopher F. Parmeter & R. Robert Russell, 2008. "Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 607-638.
    2. Sayed A. Mostafa & Ibrahim A. Ahmad, 2019. "Kernel density estimation from complex surveys in the presence of complete auxiliary information," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 295-338, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:spo:wpmain:info:hdl:2441/7182 is not listed on IDEAS
    2. Sebastian Weber, 2009. "European Financial Market Integration: A Closer Look at Government Bonds in Eurozone Countries," Working Paper / FINESS 1.1b, DIW Berlin, German Institute for Economic Research.
    3. Harding, Don & Pagan, Adrian, 2011. "An Econometric Analysis of Some Models for Constructed Binary Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 86-95.
    4. Jang-Ting Guo & Rong-Chang Wu, 1998. "Financial Liberalization and the Exchange-Rate Exposure of the Taiwanese Firms: A Nonparametric Analysis of Taiwan," Multinational Finance Journal, Multinational Finance Journal, vol. 2(1), pages 37-61, March.
    5. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    6. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
    7. Ural Marchand, Beyza, 2012. "Tariff pass-through and the distributional effects of trade liberalization," Journal of Development Economics, Elsevier, vol. 99(2), pages 265-281.
    8. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    9. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    10. Dirk Tasche, 2009. "Estimating discriminatory power and PD curves when the number of defaults is small," Papers 0905.3928, arXiv.org, revised Mar 2010.
    11. Connor, Gregory & Linton, Oliver, 2007. "Semiparametric estimation of a characteristic-based factor model of common stock returns," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 694-717, December.
    12. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    13. David Fairris & Gurleen Popli & Eduardo Zepeda, 2008. "Minimum Wages and the Wage Structure in Mexico," Review of Social Economy, Taylor & Francis Journals, vol. 66(2), pages 181-208.
    14. Gurleen K. Popli, 2007. "Rising Wage Inequality in Mexico, 1984-2000: A Distributional Analysis," Journal of Income Distribution, Ad libros publications inc., vol. 16(2), pages 49-67, June.
    15. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    16. Zhu, Rong, 2011. "NILS Working paper no 170. The impact of major--job mismatch on college graduates' early career earnings," NILS Working Papers 26072, National Institute of Labour Studies.
    17. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    18. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    19. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    20. Inanoglu, Hulusi & Jacobs, Michael, Jr. & Liu, Junrong & Sickles, Robin, 2015. "Analyzing Bank Efficiency: Are "Too-Big-to-Fail" Banks Efficient?," Working Papers 15-016, Rice University, Department of Economics.
    21. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:acb:cbeeco:2005-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/feanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.