IDEAS home Printed from https://ideas.repec.org/a/taf/conmgt/v25y2007i8p883-892.html
   My bibliography  Save this article

A macro approach to estimating correlated random variables in engineering production projects

Author

Listed:
  • David Hudak
  • Mark Maxwell

Abstract

An important consideration in cost risk analysis is the amount of correlation between different cost elements. If correlation is ignored, both the probability and magnitude of costs overruns could be significantly underestimated. The two major difficulties in implementing correlation addressed are estimating correlation coefficients and providing an accurate theoretical risk analysis approach to account for these correlations. Since detailed correlation data are often difficult or impossible to obtain, an intuitive approach is proposed, which estimates correlations for cost estimates relative to several underlying macro factors. The correlation matrix obtained by this method is positive semi-definite and a case study based upon three macro factors is given. The cost risk distributions are computed and compared using the beta fit model and two other more complicated models. This study shows negligible differences in cost risk dollars when computed by the various models. This method of using macro factors to estimate correlation coefficients can account for significant additional cost risk dollars while not requiring external correlation data.

Suggested Citation

  • David Hudak & Mark Maxwell, 2007. "A macro approach to estimating correlated random variables in engineering production projects," Construction Management and Economics, Taylor & Francis Journals, vol. 25(8), pages 883-892.
  • Handle: RePEc:taf:conmgt:v:25:y:2007:i:8:p:883-892
    DOI: 10.1080/01446190701411224
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/01446190701411224
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01446190701411224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    2. Philip M. Lurie & Matthew S. Goldberg, 1998. "An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions," Management Science, INFORMS, vol. 44(2), pages 203-218, February.
    3. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    4. Malik Ranasinghe, 2000. "Impact of correlation and induced correlation on the estimation of project cost of buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 18(4), pages 395-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    2. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    3. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    4. Al-Subaihi, Ali A., 2004. "Simulating Correlated Multivariate Pseudorandom Numbers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i04).
    5. M Hashem Pesaran & Takashi Yamagata, 2012. "Testing CAPM with a Large Number of Assets," Discussion Papers 12/05, Department of Economics, University of York.
    6. Pasquale Dolce & Cristina Davino & Domenico Vistocco, 2022. "Quantile composite-based path modeling: algorithms, properties and applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 909-949, December.
    7. I-Tung Yang, 2006. "Using Gaussian copula to simulate repetitive projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(9), pages 901-909.
    8. Ke-Hai Yuan & Peter Bentler, 2002. "On robusiness of the normal-theory based asymptotic distributions of three reliability coefficient estimates," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 251-259, June.
    9. repec:jss:jstsof:09:i04 is not listed on IDEAS
    10. Jeff Jones & Niels Waller, 2015. "The Normal-Theory and Asymptotic Distribution-Free (ADF) Covariance Matrix of Standardized Regression Coefficients: Theoretical Extensions and Finite Sample Behavior," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 365-378, June.
    11. Njål Foldnes & Steffen Grønneberg, 2015. "How General is the Vale–Maurelli Simulation Approach?," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1066-1083, December.
    12. Hakan Demirtas, 2016. "A Note on the Relationship Between the Phi Coefficient and the Tetrachoric Correlation Under Nonnormal Underlying Distributions," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 143-148, May.
    13. Caio Mário Mesquita & Cristiano Arbex Valle & Adriano César Machado Pereira, 2024. "Scenario Generation for Financial Data with a Machine Learning Approach Based on Realized Volatility and Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1879-1919, May.
    14. Reinartz, Werner & Haenlein, Michael & Henseler, Jörg, 2009. "An empirical comparison of the efficacy of covariance-based and variance-based SEM," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 332-344.
    15. Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
    16. Headrick, Todd C. & Sheng, Yanyan & Hodis, Flaviu-Adrian, 2007. "Numerical Computing and Graphics for the Power Method Transformation Using Mathematica," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i03).
    17. Mahul, Olivier, 2002. "Hedging Price Risk in the Presence of Crop Yield and Revenue Insurance," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24881, European Association of Agricultural Economists.
    18. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    19. Rainer Schlittgen & Marko Sarstedt & Christian M. Ringle, 2020. "Data generation for composite-based structural equation modeling methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 747-757, December.
    20. repec:jss:jstsof:19:i03 is not listed on IDEAS
    21. Hakan Demirtas & Robab Ahmadian & Sema Atis & Fatma Ezgi Can & Ilker Ercan, 2016. "A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization," Computational Statistics, Springer, vol. 31(4), pages 1385-1401, December.
    22. Theo Dijkstra & Karin Schermelleh-Engel, 2014. "Consistent Partial Least Squares for Nonlinear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 585-604, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:25:y:2007:i:8:p:883-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.