IDEAS home Printed from https://ideas.repec.org/a/taf/conmgt/v16y1998i4p471-479.html
   My bibliography  Save this article

A neural networks approach for cost flow forecasting

Author

Listed:
  • A. H. Boussabaine
  • A. P. Kaka

Abstract

Artificial neural networks, which simulate neuronal systems of the brain, are useful methods that have attracted the attention of researchers in many disciplinary areas. They have many advantages over traditional methods in situations where the input-output relationship of the system under study is not explicitly known. This paper investigates the feasibility of using neural networks for predicting the cost flow of construction projects, explains the need for cost flow forecasting, and demonstrates the limitation of the existing models. It then introduces neural networks as an alternative approach to those mathematical and statistical methods. The method used in collecting data and modelling the cost flow is described. Results of the testing are presented and discussed.

Suggested Citation

  • A. H. Boussabaine & A. P. Kaka, 1998. "A neural networks approach for cost flow forecasting," Construction Management and Economics, Taylor & Francis Journals, vol. 16(4), pages 471-479.
  • Handle: RePEc:taf:conmgt:v:16:y:1998:i:4:p:471-479
    DOI: 10.1080/014461998372240
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/014461998372240
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/014461998372240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd. Ahmed & Saeed AlQadhi & Javed Mallick & Nabil Ben Kahla & Hoang Anh Le & Chander Kumar Singh & Hoang Thi Hang, 2022. "Artificial Neural Networks for Sustainable Development of the Construction Industry," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    2. Mahir Msawil & Faris Elghaish & Krisanthi Seneviratne & Stephen McIlwaine, 2021. "Developing a Parametric Cash Flow Forecasting Model for Complex Infrastructure Projects: A Comparative Study," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    3. Qingbin Cui & Makarand Hastak & Daniel Halpin, 2010. "Systems analysis of project cash flow management strategies," Construction Management and Economics, Taylor & Francis Journals, vol. 28(4), pages 361-376.
    4. Cheng, Min-Yuan & Cao, Minh-Tu & Herianto, Jason Ghorman, 2020. "Symbiotic organisms search-optimized deep learning technique for mapping construction cash flow considering complexity of project," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Xin J. Ge & G. Runeson, 2004. "Modeling Property Prices Using Neural Network Model for Hong Kong," International Real Estate Review, Global Social Science Institute, vol. 7(1), pages 121-138.
    6. A. H. Boussabaine & Taha Elhag, 1999. "Applying fuzzy techniques to cash flow analysis," Construction Management and Economics, Taylor & Francis Journals, vol. 17(6), pages 745-755.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:16:y:1998:i:4:p:471-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.