IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v48y2016i50p4799-4812.html
   My bibliography  Save this article

Rating the credit rating agencies

Author

Listed:
  • Dror Parnes
  • Sagi Akron

Abstract

We offer herein several policy tools that can assist the new Office of Credit Ratings within the Securities and Exchange Commission in assessing the quality of past credit ratings and thus measuring the inclusive competency of credit rating agencies. We propose to weigh the degrees of accuracy, consistency and total synchronization between a tested sample of past ratings and a benchmark array of flawless ratings. We also discuss various techniques to handle major discrepancies between these two arrays of credit ratings. We further explain and demonstrate the importance of different sample sizes. In addition, we present a simple approach to estimate the probability of convergence between the two matched sets of ratings under specified governing thresholds. Lastly, we illustrate the bulk of the theory with a concise empirical investigation.

Suggested Citation

  • Dror Parnes & Sagi Akron, 2016. "Rating the credit rating agencies," Applied Economics, Taylor & Francis Journals, vol. 48(50), pages 4799-4812, October.
  • Handle: RePEc:taf:applec:v:48:y:2016:i:50:p:4799-4812
    DOI: 10.1080/00036846.2016.1164826
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2016.1164826
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2016.1164826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wai Choi Lee & Jianfu Shen & Tsun Se Cheong & Michal Wojewodzki, 2021. "Detecting conflicts of interest in credit rating changes: a distribution dynamics approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-23, December.
    2. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou & Efterpi Doumpa & Maria Stefanidou, 2020. "Forecasting Credit Ratings of EU Banks," IJFS, MDPI, vol. 8(3), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    2. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Kristóf, Tamás, 2008. "A csődelőrejelzés és a nem fizetési valószínűség számításának módszertani kérdéseiről [Some methodological questions of bankruptcy prediction and probability of default estimation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 441-461.
    4. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    5. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    6. Maurice Peat, 2007. "Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
    7. Talam, Camilla & Kiemo, Samuel, 2024. "Interest rate risk in Kenya: The banking sector stability and fiscal risks nexus," KBA Centre for Research on Financial Markets and Policy Working Paper Series 80, Kenya Bankers Association (KBA).
    8. Amir Ghafourian Shagerdi & Ali Mahdavipour & Reza Jahanshiri Ariyan Tashakori Baghdar & Mohammad Sajjad Ghafourian Shagerdi, 2020. "Investment Efficiency and Audit Fee from the Perspective of the Role of Financial Distress," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 318-333.
    9. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    10. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    11. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    12. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    13. Lillian Cheung & Amnon Levy, 1998. "An integrative analysis of business bankruptcy in Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
    14. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    15. Elizabeth Demers & Philip Joos, 2007. "IPO Failure Risk," Journal of Accounting Research, Wiley Blackwell, vol. 45(2), pages 333-371, May.
    16. Arati Kale & Devendra Kale & Sriram Villupuram, 2024. "Decomposition of risk for small size and low book-to-market stocks," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 96-112, February.
    17. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    18. de Oliveira Leite, Rodrigo & dos Santos Mendes, Layla & de Lacerda Moreira, Rafael, 2020. "Profit status of microfinance institutions and incentives for earnings management," Research in International Business and Finance, Elsevier, vol. 54(C).
    19. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
    20. Taieb Hamadi & Sami El Omari, & Wafa Khlif, 2012. "Poids De L'Avis De L'Expert Comptable Judiciaire Dans La Decision Du Juge En Matiere De Redressement Judiciaire : Cas De La Tunisie," Post-Print hal-00937922, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:48:y:2016:i:50:p:4799-4812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.