IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v47y2015i57p6191-6199.html
   My bibliography  Save this article

Directional accuracy, forecasting error and the profitability of currency trading: model-based evidence

Author

Listed:
  • Imad Moosa
  • John Vaz

Abstract

Three models (the flexible-price monetary model, PPP and a univariate ARIMA model) are estimated for 45 currency pairs to find out if the profitability of forecasting-based currency trading is more related to the ability of the underlying model to predict the direction of change than the magnitude of the forecasting error. Theoretical considerations show that a correct prediction of the direction of change is neither a necessary nor a sufficient condition for a profitable trade. The results of the exercise indicate that profitability is more strongly correlated with directional accuracy than with the magnitude of the error.

Suggested Citation

  • Imad Moosa & John Vaz, 2015. "Directional accuracy, forecasting error and the profitability of currency trading: model-based evidence," Applied Economics, Taylor & Francis Journals, vol. 47(57), pages 6191-6199, December.
  • Handle: RePEc:taf:applec:v:47:y:2015:i:57:p:6191-6199
    DOI: 10.1080/00036846.2015.1068917
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2015.1068917
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2015.1068917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massimiliano Marcellino, "undated". "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    2. Abhyankar, Abhay & Sarno, Lucio & Valente, Giorgio, 2005. "Exchange rates and fundamentals: evidence on the economic value of predictability," Journal of International Economics, Elsevier, vol. 66(2), pages 325-348, July.
    3. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    4. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    5. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    6. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    7. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imad Moosa & Kelly Burns, 2016. "The random walk as a forecasting benchmark: drift or no drift?," Applied Economics, Taylor & Francis Journals, vol. 48(43), pages 4131-4142, September.
    2. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    3. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    2. Kelly Burns, 2016. "A Reconsideration of the Meese-Rogoff Puzzle: An Alternative Approach to Model Estimation and Forecast Evaluation," Multinational Finance Journal, Multinational Finance Journal, vol. 20(1), pages 41-83, March.
    3. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    4. Imad Moosa & Kelly Burns, 2014. "Error correction modelling and dynamic specifications as a conduit to outperforming the random walk in exchange rate forecasting," Applied Economics, Taylor & Francis Journals, vol. 46(25), pages 3107-3118, September.
    5. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    6. Imad Moosa & Kelly Burns, 2014. "A reappraisal of the Meese--Rogoff puzzle," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 30-40, January.
    7. Garratt, Anthony & Lee, Kevin, 2010. "Investing under model uncertainty: Decision based evaluation of exchange rate forecasts in the US, UK and Japan," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 403-422, April.
    8. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    9. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    10. Joscha Beckmann & Ansgar Belke & Michael Kühl, 2009. "How Stable Are Monetary Models of the Dollar-Euro Exchange Rate?: A Time-Varying Coefficient Approach," Discussion Papers of DIW Berlin 944, DIW Berlin, German Institute for Economic Research.
    11. Afees A. Salisu & Juncal Cuñado & Kazeem Isah & Rangan Gupta, 2021. "Stock markets and exchange rate behavior of the BRICS," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1581-1595, December.
    12. Iregui, Ana María & Núñez, Héctor M. & Otero, Jesús, 2021. "Testing the efficiency of inflation and exchange rate forecast revisions in a changing economic environment," Journal of Economic Behavior & Organization, Elsevier, vol. 187(C), pages 290-314.
    13. Pasquale Della Corte & Lucio Sarno & Giulia Sestieri, 2012. "The Predictive Information Content of External Imbalances for Exchange Rate Returns: How Much Is It Worth?," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 100-115, February.
    14. Charles Engel & Nelson C. Mark & Kenneth D. West, 2015. "Factor Model Forecasts of Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 32-55, February.
    15. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    16. Engel, Charles, 2014. "Exchange Rates and Interest Parity," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 453-522, Elsevier.
    17. Bacchetta, Philippe & van Wincoop, Eric, 2013. "On the unstable relationship between exchange rates and macroeconomic fundamentals," Journal of International Economics, Elsevier, vol. 91(1), pages 18-26.
    18. Lucio Sarno, 2005. "Viewpoint: Towards a solution to the puzzles in exchange rate economics: where do we stand?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(3), pages 673-708, August.
    19. Haruna, Issahaku & Abdulai, Hamdeeya & Kriesie, Maryiam & Harvey, Simon K., 2015. "Exchange rate forecasting in the West African Monetary Zone: a comparison of forecast performance of time series models," MPRA Paper 97009, University Library of Munich, Germany, revised 26 Jul 2015.
    20. MacDonald, Ronald & Menkhoff, Lukas & Rebitzky, Rafael R., 2009. "Exchange rate forecasters’ performance: evidence of skill?," SIRE Discussion Papers 2009-10, Scottish Institute for Research in Economics (SIRE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:47:y:2015:i:57:p:6191-6199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.