IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v39y2007i16p2069-2084.html
   My bibliography  Save this article

Forecasting agricultural exports and imports in South Africa

Author

Listed:
  • J. M. Kargbo

Abstract

The implementation of wide-ranging policy reforms, including trade and exchange rate policies, is improving the efficiency of the South African economy and its reintegration into the global economy with rapid export expansion. Agricultural exports in the Southern African Customs Union increased from R8.14 billion in 1995 to R23.0 billion in 2003, whilst agricultural imports rose from R6.83 billion to R13.84 billion during the same period. This article uses alternative approaches to forecasting agricultural exports and imports in South Africa. The models used include: exponential smoothing, autoregressive integrated moving average (ARIMA), vector autoregression (VAR), Engle-Granger (EG) single-equation and vector error-correction models (VECM). We found that the ARIMA and EG methods outperform the VAR and VECM according to Theil's U-statistic. The VAR outperforms the VECM in forecasting agricultural exports in South Africa. The combined forecasts have a lower variance compared to individual forecasts, thereby, reducing the risks of making wrong decisions based on the forecasts. The article provides empirical evidence that is beneficial to policymakers and business leaders in South Africa as they strive to reduce poverty and inequality and increase economic growth.

Suggested Citation

  • J. M. Kargbo, 2007. "Forecasting agricultural exports and imports in South Africa," Applied Economics, Taylor & Francis Journals, vol. 39(16), pages 2069-2084.
  • Handle: RePEc:taf:applec:v:39:y:2007:i:16:p:2069-2084
    DOI: 10.1080/00036840600707183
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/00036840600707183
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036840600707183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madhavi Bokil & Axel Schimmelpfennig, 2006. "Three Attempts at Inflation Forecasting in Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 45(3), pages 341-368.
    2. David F. Hendry & Neil R. Ericsson (ed.), 2003. "Understanding Economic Forecasts," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582422, December.
    3. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    4. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, December.
    5. David F. Hendry, 2004. "Unpredictability and the Foundations of Economic Forecasting," Economics Papers 2004-W15, Economics Group, Nuffield College, University of Oxford.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Rafiq & Liu Hai Yun & Gulzar Ali, 2016. "Forecasting the Trend Analysis of Trade Balance of Pakistan: A Theoretical and Empirical Investigation," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(7), pages 188-214, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    2. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.
    3. Melisso Boschi & Alessandro Girardi, 2007. "Euro area inflation: long-run determinants and short-run dynamics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(1), pages 9-24.
    4. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    5. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
    6. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
    7. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2008. "Automatic leading indicators versus macroeconometric structural models: A comparison of inflation and GDP growth forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 399-413.
    8. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
    9. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2007. "Automatic Leading Indicators (ALIs) versus Macro Econometric Structural Models (MESMs): Comparison of Inflation and GDP growth Forecasting," EcoMod2007 23900072, EcoMod.
    10. WAN, Shui-Ki & WANG, Shin-Huei & WOO, Chi-Keung, 2012. "Total tourist arrival forecast: aggregation vs. disaggregation," LIDAM Discussion Papers CORE 2012039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    12. Giuseppe Croce & Emanuela Ghignoni, 2011. "Overeducation and spatial flexibility in Italian local labour markets," Working Papers in Public Economics 145, Department of Economics and Law, Sapienza University of Roma.
    13. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    14. Darrian Collins & Clem Tisdell, 2004. "Outbound Business Travel Depends on Business Returns: Australian Evidence," Australian Economic Papers, Wiley Blackwell, vol. 43(2), pages 192-207, June.
    15. Jongeneel, Roelof A. & Ge, Lan, 2005. "Explaining Growth in Dutch Agriculture: Prices, Public R&D, and Technological Change," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24573, European Association of Agricultural Economists.
    16. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    17. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    18. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    19. Rao, Surekha & Ghali, Moheb & Krieg, John, 2008. "On the J-test for nonnested hypotheses and Bayesian extension," MPRA Paper 14637, University Library of Munich, Germany.
    20. Schimmelpfennig, Axel, 1998. "The celtic tiger faces the factor price frontier: Labour market adjustment in Ireland," Kiel Working Papers 855, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:39:y:2007:i:16:p:2069-2084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.