IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v37y2005i7p741-749.html
   My bibliography  Save this article

Building confidence intervals for band-pass and Hodrick-Prescott filters: an application using bootstrapping

Author

Listed:
  • Francisco Gallego
  • Christian Johnson

Abstract

This article generates innovative confidence intervals for two of the most popular de-trending methods: Hodrick-Prescott and band-pass filters. The confidence intervals are obtained using block-bootstrapping techniques for dependent data. GDP trend growth and output gap intervals for the G7 economies are used as examples. This new methodology increases the usefulness of these filters by overcoming the absence of confidence intervals.

Suggested Citation

  • Francisco Gallego & Christian Johnson, 2005. "Building confidence intervals for band-pass and Hodrick-Prescott filters: an application using bootstrapping," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 741-749.
  • Handle: RePEc:taf:applec:v:37:y:2005:i:7:p:741-749
    DOI: 10.1080/00036840500048985
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/00036840500048985
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036840500048985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Uhlig, H.F.H.V.S. & Ravn, M., 1997. "On Adjusting the H-P Filter for the Frequency of Observations," Discussion Paper 1997-50, Tilburg University, Center for Economic Research.
    2. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    3. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    4. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    5. Kevin J. Lansing, 2000. "Learning about a shift in trend output: implications for monetary policy and inflation," Proceedings, Federal Reserve Bank of San Francisco.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Ferreyra & Jorge Salas, 2006. "The Equilibrium Real Exchange Rate in Peru: BEER Models and Confidence Band Building," Working Papers 2006-006, Banco Central de Reserva del Perú.
    2. Miroslav Plašil, 2011. "Potenciální produkt, mezera výstupu a míra nejistoty spojená s jejich určením při použití Hodrick-Prescottova filtru [Potential Product, Output Gap and Uncertainty Rate Associated with Their Determ," Politická ekonomie, Prague University of Economics and Business, vol. 2011(4), pages 490-507.
    3. Siem Jan Koopman & Kai Ming Lee, 2005. "Measuring Asymmetric Stochastic Cycle Components in U.S. Macroeconomic Time Series," Tinbergen Institute Discussion Papers 05-081/4, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ageliki Anagnostou & Ioannis Panteladis & Maria Tsiapa, 2015. "Disentangling different patterns of business cycle synchronicity in the EU regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(3), pages 615-641, August.
    2. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    3. Padhan, Rakesh & Prabheesh, K.P., 2020. "Business cycle synchronization: Disentangling direct and indirect effect of financial integration in the Indian context," Economic Modelling, Elsevier, vol. 85(C), pages 272-287.
    4. Ard den Reijer, 2006. "The Dutch business cycle: which indicators should we monitor?," DNB Working Papers 100, Netherlands Central Bank, Research Department.
    5. Henk C. Kranendonk & Jan Bonenkamp & Johan P. Verbruggen, 2004. "A Leading Indicator for the Dutch Economy – Methodological and Empirical Revision of the CPB System," CESifo Working Paper Series 1200, CESifo.
    6. James B. Bullard & John Duffy, 2004. "Learning and structural change in macroeconomic data," Working Papers 2004-016, Federal Reserve Bank of St. Louis.
    7. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    8. Martínez, Juan Francisco & Oda, Daniel, 2021. "Characterization of the Chilean financial cycle, early warning indicators and implications for macro-prudential policies," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    9. Richard Ashley & Randal Verbrugge, 2009. "Frequency Dependence in Regression Model Coefficients: An Alternative Approach for Modeling Nonlinear Dynamic Relationships in Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 4-20.
    10. Artis, Michael, 2002. "Dating the Business Cycle in Britain," National Institute Economic Review, National Institute of Economic and Social Research, vol. 182, pages 90-95, October.
    11. Lake, James & Linask, Maia K., 2016. "Could tariffs be pro-cyclical?," Journal of International Economics, Elsevier, vol. 103(C), pages 124-146.
    12. Nath, Hiranya K., 2016. "A note on the cyclical behavior of sectoral employment in the U.S," Economic Analysis and Policy, Elsevier, vol. 50(C), pages 52-61.
    13. Botshekan, Mahmoud & Lucas, André, 2017. "Long-Term versus Short-Term Contingencies in Asset Allocation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2277-2303, October.
    14. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    15. Aadland, David, 2005. "Detrending time-aggregated data," Economics Letters, Elsevier, vol. 89(3), pages 287-293, December.
    16. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    17. Ciccarelli, Carlo & Fenoaltea, Stefano & Proietti, Tommaso, 2008. "The comovements of construction in Italy's regions, 1861-1913," MPRA Paper 8870, University Library of Munich, Germany.
    18. Afonso, António & Furceri, Davide, 2010. "Government size, composition, volatility and economic growth," European Journal of Political Economy, Elsevier, vol. 26(4), pages 517-532, December.
    19. Rua, Antonio & Nunes, Luis C., 2005. "Coincident and leading indicators for the euro area: A frequency band approach," International Journal of Forecasting, Elsevier, vol. 21(3), pages 503-523.
    20. Heer, Burkhard & Süssmuth, Bernd, 2013. "Tax bracket creep and its effects on income distribution," Journal of Macroeconomics, Elsevier, vol. 38(PB), pages 393-408.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:37:y:2005:i:7:p:741-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.