IDEAS home Printed from https://ideas.repec.org/a/prg/jnlpol/v2011y2011i4id801p490-507.html
   My bibliography  Save this article

Potenciální produkt, mezera výstupu a míra nejistoty spojená s jejich určením při použití Hodrick-Prescottova filtru
[Potential Product, Output Gap and Uncertainty Rate Associated with Their Determination while Using the Hodrick-Prescott Filter]

Author

Listed:
  • Miroslav Plašil

Abstract

In various fields of macroeconomic modelling, researchers often face the problem of decomposing time series into trend component and cycle fluctuations. While there are several potentially useful methods to perform the task in question, Hodrick-Prescott (HP) fi lter seems to have remained (despite some serious criticism) the most popular approach over the past decade. In this article I propose a straightforward and easy-to-implement bootstrap procedure for building pointwise and simultaneous confidence intervals around "point estimates" produced by HP filter. The principle of proposed method can be described as follows: first, we use maximum entropy bootstrap (Vinod, 2004, 2006) to approximate ensemble from which original time series is drawn and then apply the HP filter directly to each bootstrap replication. If necessary, the proposed method can be adapted to allow for uncertainty in the smoothing parameter. Practical usefulness of our approach is demonstrated with an application to the GDP data. Results are encouraging - obtained confi dence intervals for the trend and cyclical component are overall plausible thus supplying a researcher with some measure of uncertainty related to HP filtering. Finally, we demonstrate that a former approach to build confidence intervals for HP filter (Gallego and Johnson, 2005) leads to erratic inference for cycle due to the shape-destroying block bootstrap sampling.

Suggested Citation

  • Miroslav Plašil, 2011. "Potenciální produkt, mezera výstupu a míra nejistoty spojená s jejich určením při použití Hodrick-Prescottova filtru [Potential Product, Output Gap and Uncertainty Rate Associated with Their Determ," Politická ekonomie, Prague University of Economics and Business, vol. 2011(4), pages 490-507.
  • Handle: RePEc:prg:jnlpol:v:2011:y:2011:i:4:id:801:p:490-507
    DOI: 10.18267/j.polek.801
    as

    Download full text from publisher

    File URL: http://polek.vse.cz/doi/10.18267/j.polek.801.html
    Download Restriction: free of charge

    File URL: http://polek.vse.cz/doi/10.18267/j.polek.801.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.polek.801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canova, Fabio, 1998. "Detrending and business cycle facts: A user's guide," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 533-540, May.
    2. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
    3. Alasdair Scott, 2000. "Stylised facts from output gap measures," Reserve Bank of New Zealand Discussion Paper Series DP2000/07, Reserve Bank of New Zealand.
    4. Regina Kaiser & Agustín Maravall, 1999. "Estimation of the business cycle: A modified Hodrick-Prescott filter," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 175-206.
    5. Albert Marcet & Morte O. Ravn, "undated". "The HP-Filter in Cross-Country Comparisons," Studies on the Spanish Economy 100, FEDEA.
    6. Thomas M. Trimbur, 2006. "Detrending economic time series: a Bayesian generalization of the Hodrick-Prescott filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 247-273.
    7. Schlicht, Ekkehart, 2004. "Estimating the Smoothing Parameter in the So-Called Hodrick-Prescott Filter," Discussion Papers in Economics 304, University of Munich, Department of Economics.
    8. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    9. International Monetary Fund, 2010. "Estimating Potential Output with a Multivariate Filter," IMF Working Papers 2010/285, International Monetary Fund.
    10. Francisco Gallego & Christian Johnson, 2005. "Building confidence intervals for band-pass and Hodrick-Prescott filters: an application using bootstrapping," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 741-749.
    11. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    12. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    13. Alasdair Scott, 2000. "A multivariate unobserved components model of cyclical activity," Reserve Bank of New Zealand Discussion Paper Series DP2000/04, Reserve Bank of New Zealand.
    14. Mr. Andreas Billmeier, 2004. "Ghostbusting: Which Output Gap Measure Really Matters?," IMF Working Papers 2004/146, International Monetary Fund.
    15. Danthine, Jean-Pierre & Girardin, Michel, 1989. "Business cycles in Switzerland : A comparative study," European Economic Review, Elsevier, vol. 33(1), pages 31-50, January.
    16. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    17. Vinod, Hrishikesh D. & Lopez-de-Lacalle, Javier, 2009. "Maximum Entropy Bootstrap for Time Series: The meboot R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i05).
    18. Vinod, H. D., 2004. "Ranking mutual funds using unconventional utility theory and stochastic dominance," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 353-377, June.
    19. Vinod, Hrishikesh D., 2006. "Maximum entropy ensembles for time series inference in economics," Journal of Asian Economics, Elsevier, vol. 17(6), pages 955-978, December.
    20. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
    2. Jaqueson K. Galimberti & Marcelo L. Moura, 2011. "Improving the reliability of real-time Hodrick-Prescott filtering using survey forecasts," Centre for Growth and Business Cycle Research Discussion Paper Series 159, Economics, The University of Manchester.
    3. Angelos VOULDIS & Panayotis MICHAELIDES & John MILIOS, 2008. "Do Technology Shocks affect Output and Profitability over the Business Cycle in Greece (1960-2008)?," EcoMod2008 23800152, EcoMod.
    4. Eduardo Loría & Emmanuel Salas, 2014. "Ciclos, crecimiento económico y crisis en México, 1980.1-2013.4," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 29(2), pages 131-161.
    5. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    6. Maravall, Agustín, 1999. "Short-term and long-term trends, seasonal and the business cycle," DES - Working Papers. Statistics and Econometrics. WS 6291, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Álvarez, Luis J. & Gómez-Loscos, Ana, 2018. "A menu on output gap estimation methods," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 827-850.
    8. David E. Giles & Chad N. Stroomer, 2004. "Identifying the Cycle of a Macroeconomic Time-Series Using Fuzzy Filtering," Econometrics Working Papers 0406, Department of Economics, University of Victoria.
    9. Mark Meyer & Peter Winker*, 2005. "Using HP Filtered Data for Econometric Analysis: Some Evidence from Monte Carlo Simulations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 89(3), pages 303-320, August.
    10. Tawadros, George B., 2011. "The stylised facts of Australia's business cycle," Economic Modelling, Elsevier, vol. 28(1), pages 549-556.
    11. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    13. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.
    14. Aadland, David, 2005. "Detrending time-aggregated data," Economics Letters, Elsevier, vol. 89(3), pages 287-293, December.
    15. Michaelides, Panayotis G. & Papageorgiou, Theofanis, 2012. "On the transmission of economic fluctuations from the USA to EU-15 (1960–2011)," Journal of Economics and Business, Elsevier, vol. 64(6), pages 427-438.
    16. Andrikopoulos, Andreas & Loizides, Ioannis & Prodromidis, Kyprianos, 2004. "Fiscal policy and political business cycles in the EU," European Journal of Political Economy, Elsevier, vol. 20(1), pages 125-152, March.
    17. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    18. Sunder, Marco & Woitek, Ulrich, 2005. "Boom, bust, and the human body: Further evidence on the relationship between height and business cycles," Economics & Human Biology, Elsevier, vol. 3(3), pages 450-466, December.
    19. Mertens, Elmar, 2010. "Structural shocks and the comovements between output and interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1171-1186, June.
    20. Uhlig, H.F.H.V.S. & Ravn, M., 1997. "On Adjusting the H-P Filter for the Frequency of Observations," Discussion Paper 1997-50, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    output gap; r; Hodrick-Prescott filter; confidence intervals; bootstrap; potential product;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpol:v:2011:y:2011:i:4:id:801:p:490-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.