IDEAS home Printed from https://ideas.repec.org/p/osf/inarxi/fhbsx.html
   My bibliography  Save this paper

Valuasi Opsi Beli ({\it Call Options}) Eropa bervolatilitas Stokastik dengan menggunakan Modifikasi Metode Karakteristik dan Metode Elemen Hingga

Author

Listed:
  • Garnadi, Agah D.

Abstract

Dalam tulisan ini, disajikan pemakaian Metode Elemen Hingga dikombinasikan dengan Modifikasi Metode Karakteristik untuk valuasi opsi beli Eropa bervolatilitas stokastik. Nilai opsi beli Eropa bervolatilitas stokastik ini, dinyatakan sebagai persamaan transport konveksi-diffusi yang berevolusi, dengan koefisien bergantung secara spasial untuk suku konveksi dan diffusinya, sehingga bersifat 'cacat' ({\it degenerate}). Dalam approksimasi waktu, digunakan metode splitting 2-langkah. Pada langkah pertama, digunakan Modifikasi Metode Karakteristik, dan langkah kedua digunakan metode implisit (backward Euler). Sedangkan approksimasi spasial digunakan Metode Elemen Hingga, dengan menggunakan basis elemen bilinear. Penggunaan Modifikasi Metode Karakteristik, memerlukan interpolasi untuk setiap langkahnya, dalam tulisan ini digunakan interpolasi biharmonik. Sebuah kasus dari Opsi beli Eropa untuk pertukaran mata uang asing akan disajikan sebagai contoh untuk hasil numeriknya.

Suggested Citation

  • Garnadi, Agah D., 2017. "Valuasi Opsi Beli ({\it Call Options}) Eropa bervolatilitas Stokastik dengan menggunakan Modifikasi Metode Karakteristik dan Metode Elemen Hingga," INA-Rxiv fhbsx, Center for Open Science.
  • Handle: RePEc:osf:inarxi:fhbsx
    DOI: 10.31219/osf.io/fhbsx
    as

    Download full text from publisher

    File URL: https://osf.io/download/5a140396594d900272a489b3/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/fhbsx?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. P. A. Forsyth & K. R. Vetzal & R. Zvan, 1999. "A finite element approach to the pricing of discrete lookbacks with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 87-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Windcliff, H. & Vetzal, K. R. & Forsyth, P. A. & Verma, A. & Coleman, T. F., 2003. "An object-oriented framework for valuing shout options on high-performance computer architectures," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1133-1161, April.
    2. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    3. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    4. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    5. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    6. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    7. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    8. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    9. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    10. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    11. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    12. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    13. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    14. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    15. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    16. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    17. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    18. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    19. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    20. Ruan, Xinfeng & Zhang, Jin E., 2021. "The economics of the financial market for volatility trading," Journal of Financial Markets, Elsevier, vol. 52(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:inarxi:fhbsx. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://ios.io/preprints/inarxiv/discover .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.