IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v5y1998i1p45-82.html
   My bibliography  Save this article

General Black-Scholes models accounting for increased market volatility from hedging strategies

Author

Listed:
  • K. Ronnie Sircar
  • George Papanicolaou

Abstract

Increases in market volatility of asset prices have been observed and analysed in recent years and their cause has generally been attributed to the popularity of portfolio insurance strategies for derivative securities. The basis of derivative pricing is the Black-Scholes model and its use is so extensive that it is likely to influence the market itself. In particular it has been suggested that this is a factor in the rise in volatilities. A class of pricing models is presented that accounts for the feedback effect from the Black-Scholes dynamic hedging strategies on the price of the asset, and from there back onto the price of the derivative. These models do predict increased implied volatilities with minimal assumptions beyond those of the Black-Scholes theory. They are characterized by a nonlinear partial differential equation that reduces to the Black-Scholes equation when the feedback is removed. We begin with a model economy consisting of two distinct groups of traders: reference traders who are the majority investing in the asset expecting gain, and programme traders who trade the asset following a Black-Scholes type dynamic hedging strategy, which is not known a priori, in order to insure against the risk of a derivative security. The interaction of these groups leads to a stochastic process for the price of the asset which depends on the hedging strategy of the programme traders. Then following a Black-Scholes argument, we derive nonlinear partial differential equations for the derivative price and the hedging strategy. Consistency with the traditional Black-Scholes model characterizes the class of feedback models that we analyse in detail. We study the nonlinear partial differential equation for the price of the derivative by perturbation methods when the programme traders are a small fraction of the economy, by numerical methods, which are easy to use and can be implemented efficiently, and by analytical methods. The results clearly support the observed increasing volatility phenomenon and provide a quantitative explanation for it.

Suggested Citation

  • K. Ronnie Sircar & George Papanicolaou, 1998. "General Black-Scholes models accounting for increased market volatility from hedging strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 45-82.
  • Handle: RePEc:taf:apmtfi:v:5:y:1998:i:1:p:45-82
    DOI: 10.1080/135048698334727
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048698334727
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048698334727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grossman, Sanford J, 1988. "An Analysis of the Implications for Stock and Futures Price Volatility of Program Trading and Dynamic Hedging Strategies," The Journal of Business, University of Chicago Press, vol. 61(3), pages 275-298, July.
    2. Brennan, Michael J & Schwartz, Eduardo S, 1989. "Portfolio Insurance and Financial Market Equilibrium," The Journal of Business, University of Chicago Press, vol. 62(4), pages 455-472, October.
    3. Gennotte, Gerard & Leland, Hayne, 1990. "Market Liquidity, Hedging, and Crashes," American Economic Review, American Economic Association, vol. 80(5), pages 999-1021, December.
    4. Robert A. Jarrow, 2008. "Derivative Security Markets, Market Manipulation, and Option Pricing Theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 7, pages 131-151, World Scientific Publishing Co. Pte. Ltd..
    5. Bick, Avi, 1987. "On the Consistency of the Black-Scholes Model with a General Equilibrium Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 259-275, September.
    6. Gregory R. Duffee & Paul H. Kupiec & Patricia A. White, 1990. "A primer on program trading and stock price volatility: a survey of the issues and the evidence," Finance and Economics Discussion Series 109, Board of Governors of the Federal Reserve System (U.S.).
    7. Hans Föllmer & Martin Schweizer, 1993. "A Microeconomic Approach to Diffusion Models For Stock Prices," Mathematical Finance, Wiley Blackwell, vol. 3(1), pages 1-23, January.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    10. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    11. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374, October.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84, January.
    4. João Amaro De Matos & João Sobral Do Rosário, 2002. "Market Power And Feedback Effects From Hedging Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(08), pages 845-875.
    5. Lakshithe Wagalath, 2016. "Feedback effects and endogenous risk in financial markets," Finance, Presses universitaires de Grenoble, vol. 37(2), pages 39-74.
    6. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    7. Pradipkumar Ramanlal & Steven Mann, 1998. "Portfolio Insurance Strategies when Hedging Affects Share Prices," Journal of Financial Services Research, Springer;Western Finance Association, vol. 13(1), pages 23-35, February.
    8. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).
    9. Elettra Agliardi & Rainer Andergassen, 2007. "(S,S)-Adjustment Strategies And Dynamic Hedging," Working Paper series 09_07, Rimini Centre for Economic Analysis.
    10. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    11. RØdiger Frey, 1998. "Perfect option hedging for a large trader," Finance and Stochastics, Springer, vol. 2(2), pages 115-141.
    12. Joel M. Vanden, 2006. "Portfolio Insurance And Volatility Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 387-417, April.
    13. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    14. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. McAleer, Michael & Wiphatthanananthakul, Chatayan, 2010. "A simple expected volatility (SEV) index: Application to SET50 index options," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2079-2090.
    18. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    19. Sushant Acharya & Keshav Dogra & Sanjay R. Singh, 2021. "The financial origins of non-fundamental risk," Working Papers 345, University of California, Davis, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:5:y:1998:i:1:p:45-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.