IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v4y1997i3p165-180.html
   My bibliography  Save this article

A theoretical analysis of trading rules: an application to the moving average case with Markovian returns

Author

Listed:
  • Emmanuel Acar
  • Stephen Satchell

Abstract

A general framework for analysing trading rules is presented. We discuss different return concepts and different statistical processes for returns. We then concentrate on moving average trading rules and show, in the case of moving average models of length two, closed form expressions for the characteristic function of realized returns when the underlying return process follows a switching Markovian Gaussian process. An example is included which illustrates the technique.

Suggested Citation

  • Emmanuel Acar & Stephen Satchell, 1997. "A theoretical analysis of trading rules: an application to the moving average case with Markovian returns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(3), pages 165-180.
  • Handle: RePEc:taf:apmtfi:v:4:y:1997:i:3:p:165-180
    DOI: 10.1080/135048697334791
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048697334791
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048697334791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blake LeBaron, "undated". "Technical Trading Rules and Regime Shifts in Foreign Exchange," Working papers _007, University of Wisconsin - Madison.
    2. Charles J. Corrado & Suk-Hun Lee, 1992. "Filter Rule Tests Of The Economic Significance Of Serial Dependencies In Daily Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 15(4), pages 369-387, December.
    3. Leuthold, Raymond M & Garcia, Philip & Lu, Richard, 1994. "The Returns and Forecasting Ability of Large Traders in the Frozen Pork Bellies Futures Market," The Journal of Business, University of Chicago Press, vol. 67(3), pages 459-473, July.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. LeBaron, B., 1992. "Do Moving Average Trading Rule Results Imply Nonlinearites in Foreign Exchange Markets?," Working papers 9222, Wisconsin Madison - Social Systems.
    6. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    7. J. L. Knight & S. E. Satchell & K. C. Tran, 1995. "Statistical modelling of asymmetric risk in asset returns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(3), pages 155-172.
    8. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    9. Blake LeBaron, "undated". "Do Moving Average Trading Rule Results Imply Nonlinearities in Foreign Exchange?," Working papers _005, University of Wisconsin - Madison.
    10. Charles J. Corrado & Suk-Hun Lee, 1992. "Filter Rule Tests Of The Economic Significance Of Serial Dependencies In Daily Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 15(4), pages 369-387, December.
    11. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. J. Hong & S. Satchell, 2015. "Time series momentum trading strategy and autocorrelation amplification," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1471-1487, September.
    2. KiHoon Jimmy Hong & Eliza Wu, 2014. "Can Momentum Factors Be Used to Enhance Accounting Information based Fundamental Analysis in Explaining Stock Price Movements?," Research Paper Series 346, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. K. J. Hong & S. Satchell, 2013. "Time Series Momentum Trading Strategy and Autocorrelation Amplification," Cambridge Working Papers in Economics 1322, Faculty of Economics, University of Cambridge.
    4. Hong, KiHoon & Wu, Eliza, 2016. "The roles of past returns and firm fundamentals in driving US stock price movements," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 62-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.
    2. Alessandro Beber, 1999. "Il dibattito su dignità ed efficacia dell'analisi tecnica nell'economia finanziaria," Alea Tech Reports 003, Department of Computer and Management Sciences, University of Trento, Italy, revised 14 Jun 2008.
    3. Gencay, Ramazan, 1999. "Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules," Journal of International Economics, Elsevier, vol. 47(1), pages 91-107, February.
    4. Kwon, Ki-Yeol & Kish, Richard J., 2002. "A comparative study of technical trading strategies and return predictability: an extension of Brock, Lakonishok, and LeBaron (1992) using NYSE and NASDAQ indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 611-631.
    5. Bong-Chan, Kho, 1996. "Time-varying risk premia, volatility, and technical trading rule profits: Evidence from foreign currency futures markets," Journal of Financial Economics, Elsevier, vol. 41(2), pages 249-290, June.
    6. Bekiros, Stelios D., 2015. "Heuristic learning in intraday trading under uncertainty," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 34-49.
    7. P. Lequeux & E. Acar, 1998. "A dynamic index for managed currencies funds using CME currency contracts," The European Journal of Finance, Taylor & Francis Journals, vol. 4(4), pages 311-330.
    8. Gencay, Ramazan & Dacorogna, Michel & Olsen, Richard & Pictet, Olivier, 2003. "Foreign exchange trading models and market behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 909-935, April.
    9. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    10. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    11. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    12. F. FernAndez-RodrIguez & S. Sosvilla-Rivero & J. Andrada-FElix, 2003. "Technical analysis in foreign exchange markets: evidence from the EMS," Applied Financial Economics, Taylor & Francis Journals, vol. 13(2), pages 113-122.
    13. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    14. Bertrand Maillet & Thierry Michel, 2000. "Further insights on the puzzle of technical analysis profitability," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 196-224.
    15. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    16. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    17. Dewachter, Hans, 2001. "Can Markov switching models replicate chartist profits in the foreign exchange market?," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 25-41, February.
    18. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    19. Afiruddin Tapa* & Mohd Hasimi Yaacob & Ahmad Husni Hamzah & Yean Soh Chuen, 2018. "Trading Performance Analysis: A Comparisons Between the Original MA Crossover and Modified MA Crossover Strategy," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 933-941:6.
    20. Tabak, Benjamin M. & Lima, Eduardo J.A., 2009. "Market efficiency of Brazilian exchange rate: Evidence from variance ratio statistics and technical trading rules," European Journal of Operational Research, Elsevier, vol. 194(3), pages 814-820, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:4:y:1997:i:3:p:165-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.