IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v14y2007i3p243-260.html
   My bibliography  Save this article

Term Structure Models with Parallel and Proportional Shifts

Author

Listed:
  • Fredrik Armerin
  • Bjarne Astrup Jensen
  • Tomas Bjork

Abstract

The paper investigates the possibility of an arbitrage-free model for the term structure of interest rates where the yield curve only changes through a parallel shift. HJM type forward rate models driven by a multidimensional Wiener process and by a general marked point process are considered. Within this general framework it is shown that there does indeed exist a large variety of nontrivial parallel shift term structure models, and we also describe these in detail. It is also shown that there exists no nontrivial flat term structure model. The same analysis is repeated for a similar case, in which the yield curve only changes through proportional shifts.

Suggested Citation

  • Fredrik Armerin & Bjarne Astrup Jensen & Tomas Bjork, 2007. "Term Structure Models with Parallel and Proportional Shifts," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(3), pages 243-260.
  • Handle: RePEc:taf:apmtfi:v:14:y:2007:i:3:p:243-260
    DOI: 10.1080/13504860600858030
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860600858030
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860600858030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    2. Ingersoll, Jonathan E. & Skelton, Jeffrey & Weil, Roman L., 1978. "Duration Forty Years Later," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(4), pages 627-650, November.
    3. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    4. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    5. Bierwag, G. O., 1977. "Immunization, Duration, and the Term Structure of Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(5), pages 725-742, December.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Montrucchio, Luigi & Peccati, Lorenzo, 1991. "A note on Shiu--Fisher--Weil immunization theorem," Insurance: Mathematics and Economics, Elsevier, vol. 10(2), pages 125-131, July.
    8. Fisher, Lawrence & Weil, Roman L, 1971. "Coping with the Risk of Interest-Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," The Journal of Business, University of Chicago Press, vol. 44(4), pages 408-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel M. Gaspar & Mariana Khapko, 2023. "In memoriam: Tomas Björk (1947–2021)," Finance and Stochastics, Springer, vol. 27(4), pages 867-885, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Luís Oliveira & João Vidal Nunes & Luís Malcato, 2014. "The performance of deterministic and stochastic interest rate risk measures:," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 13(3), pages 141-165, December.
    3. Jorge Miguel Ventura Bravo & Carlos Manuel Pereira da Silva, 2005. "Immunization Using a Parametric Model of the Term Structure," Economics Working Papers 19_2005, University of Évora, Department of Economics (Portugal).
    4. Antje Berndt & Peter Ritchken & Zhiqiang Sun, 2010. "On Correlation and Default Clustering in Credit Markets," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2680-2729, July.
    5. Stefan Tappe, 2019. "Existence of affine realizations for L\'evy term structure models," Papers 1907.02363, arXiv.org.
    6. George G. Kaufman, 1980. "Duration, Planning Period, And Tests Of The Capital Asset Pricing Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 3(1), pages 1-9, March.
    7. Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    9. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    11. Erhan Bayraktar & Li Chen & H. Vincent Poor, 2005. "Consistency Problems for Jump-diffusion Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(2), pages 101-119.
    12. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, July.
    13. Dennis Schroers, 2024. "Dynamically Consistent Analysis of Realized Covariations in Term Structure Models," Papers 2406.19412, arXiv.org.
    14. A. Falco & LL. Navarro & J. Nave, 2010. "On the calibration of a Gaussian Heath-Jarrow-Morton model using consistent forward rate curves," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 495-504.
    15. Barber, Joel R. & Copper, Mark L., 1998. "A minimax risk strategy for portfolio immunization," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 173-177, November.
    16. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    17. John Caks & William R. Lane & Robert W. Greenleaf & Reginald G. Joules, 1985. "A Simple Formula For Duration," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 8(3), pages 245-249, September.
    18. Leo Krippner, 2005. "Attributing Returns and Optimising United States Swaps Portfolios Using an Intertemporally-Consistent and Arbitrage-Free Model of the Yield Curve," Working Papers in Economics 05/03, University of Waikato.
    19. repec:dau:papers:123456789/6041 is not listed on IDEAS
    20. Belal E. Baaquie & Marakani Srikant & Mitch Warachka, 2002. "A Quantum Field Theory Term Structure Model Applied to Hedging," Papers cond-mat/0206457, arXiv.org.
    21. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Keywords

    bond market; term structure of interest rates; flat term structures;
    All these keywords.

    JEL classification:

    • G00 - Financial Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:14:y:2007:i:3:p:243-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.