IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2010i4p495-504.html
   My bibliography  Save this article

On the calibration of a Gaussian Heath-Jarrow-Morton model using consistent forward rate curves

Author

Listed:
  • A. Falco
  • LL. Navarro
  • J. Nave

Abstract

No abstract is available for this item.

Suggested Citation

  • A. Falco & LL. Navarro & J. Nave, 2010. "On the calibration of a Gaussian Heath-Jarrow-Morton model using consistent forward rate curves," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 495-504.
  • Handle: RePEc:taf:quantf:v:11:y:2010:i:4:p:495-504
    DOI: 10.1080/14697680903493565
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680903493565
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903493565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    2. Mercurio, F. & Moraleda, J. M., 2000. "An analytically tractable interest rate model with humped volatility," European Journal of Operational Research, Elsevier, vol. 120(1), pages 205-214, January.
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    5. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Flavio Angelini & Stefano Herzel, 2005. "Consistent calibration of HJM models to cap implied volatilities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(11), pages 1093-1120, November.
    8. De Rossi, Giuliano, 2004. "Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 277-308, March.
    9. Buraschi, Andrea & Corielli, Francesco, 2005. "Risk management implications of time-inconsistency: Model updating and recalibration of no-arbitrage models," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2883-2907, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    2. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    5. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    6. Renato França & Raquel M. Gaspar, 2023. "On the Bias of the Unbiased Expectation Theory," Mathematics, MDPI, vol. 12(1), pages 1-20, December.
    7. Leo Krippner, 2006. "A Theoretically Consistent Version of the Nelson and Siegel Class of Yield Curve Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 39-59.
    8. Francis X. Diebold, 2004. "The Nobel Memorial Prize for Robert F. Engle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(2), pages 165-185, June.
    9. Björk, Tomas, 2000. "A Geometric View of Interest Rate Theory," SSE/EFI Working Paper Series in Economics and Finance 419, Stockholm School of Economics, revised 21 Dec 2000.
    10. Rui Chen & Jiri Svec & Maurice Peat, 2016. "Forecasting the Government Bond Term Structure in Australia," Australian Economic Papers, Wiley Blackwell, vol. 55(2), pages 99-111, June.
    11. Li, Haitao & Ye, Xiaoxia & Yu, Fan, 2020. "Unifying Gaussian dynamic term structure models from a Heath–Jarrow–Morton perspective," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1153-1167.
    12. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    13. S. Boragan Aruoba & Francis X. Diebold & Glenn D. Rudebusch, 2003. "The macroeconomy and the yield curve: a nonstructural analysis," Working Paper Series 2003-18, Federal Reserve Bank of San Francisco.
    14. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    15. João Pedro Vidal Nunes & Luís Alberto Ferreira De Oliveira, 2007. "Multifactor and analytical valuation of treasury bond futures with an embedded quality option," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(3), pages 275-303, March.
    16. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    17. Claudio Fontana & Giacomo Lanaro & Agatha Murgoci, 2024. "The geometry of multi-curve interest rate models," Papers 2401.11619, arXiv.org, revised Jun 2024.
    18. Leo Krippner, 2003. "Modelling the Yield Curve with Orthonomalised Laguerre Polynomials: An Intertemporally Consistent Approach with an Economic Interpretation," Working Papers in Economics 03/01, University of Waikato.
    19. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    20. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2010:i:4:p:495-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.