IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v15y2008i8p647-653.html
   My bibliography  Save this article

Measuring the efficiency and return to scale status of multi-mode bus transit - evidence from Taiwan's bus system

Author

Listed:
  • Ming-Miin Yu

Abstract

In this article not only the multi-activity DEA model is applied to determine the efficiency of individual services within different but highly homogeneous multi-mode transit firms, but the relationship between size and local returns to scale status of each transit service is also investigated. The empirical findings indicate that it does not necessarily imply that the transit firm will be as efficient as a single-activity model when the multi-activity model is estimated, and there are different optimal scale sizes for highway bus and urban bus service in the Taipei metropolitan area.

Suggested Citation

  • Ming-Miin Yu, 2008. "Measuring the efficiency and return to scale status of multi-mode bus transit - evidence from Taiwan's bus system," Applied Economics Letters, Taylor & Francis Journals, vol. 15(8), pages 647-653.
  • Handle: RePEc:taf:apeclt:v:15:y:2008:i:8:p:647-653
    DOI: 10.1080/13504850600721858
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850600721858&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850600721858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    2. Massimo Filippini & Paola Prioni, 2003. "The influence of ownership on the cost of bus service provision in Switzerland - an empirical illustration," Applied Economics, Taylor & Francis Journals, vol. 35(6), pages 683-690.
    3. Boaz Golany & Eran Tamir, 1995. "Evaluating Efficiency-Effectiveness-Equality Trade-Offs: A Data Envelopment Analysis Approach," Management Science, INFORMS, vol. 41(7), pages 1172-1184, July.
    4. Amor Diez-Ticio & Maria-Jesus Mancebon, 2002. "The efficiency of the Spanish police service: an application of the multiactivity DEA model," Applied Economics, Taylor & Francis Journals, vol. 34(3), pages 351-362.
    5. Tsai, P.F. & Molinero, C.M., 1998. "The Joint Determination of Efficiencies in DEA: An Application to the UK Health Service," Papers 98-140, University of Southampton - Department of Accounting and Management Science.
    6. Athanasios Noulas & Kusum Ketkar, 1998. "Efficient utilization of resources in public schools: a case study of New Jersey," Applied Economics, Taylor & Francis Journals, vol. 30(10), pages 1299-1306.
    7. Tsai, P. F. & Mar Molinero, C., 2002. "A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service," European Journal of Operational Research, Elsevier, vol. 141(1), pages 21-38, August.
    8. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    9. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    10. Cook, Wade D. & Kress, Moshe, 1999. "Characterizing an equitable allocation of shared costs: A DEA approach," European Journal of Operational Research, Elsevier, vol. 119(3), pages 652-661, December.
    11. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    12. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 1996. "Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 89(3), pages 473-481, March.
    13. Thanassoulis, E., 1996. "A data envelopment analysis approach to clustering operating units for resource allocation purposes," Omega, Elsevier, vol. 24(4), pages 463-476, August.
    14. Fare, R. & Grabowski, R. & Grosskopf, S. & Kraft, S., 1997. "Efficiency of a fixed but allocatable input: A non-parametric approach," Economics Letters, Elsevier, vol. 56(2), pages 187-193, October.
    15. Viton, Philip A., 1997. "Technical efficiency in multi-mode bus transit: A production frontier analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 23-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Xiyang Lei & Yongjun Li & Alec Morton, 2022. "Dominance and ranking interval in DEA parallel production systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 649-675, June.
    5. Chen, Chih Cheng, 2017. "Measuring departmental and overall regional performance: applying the multi-activity DEA model to Taiwan׳s cities/counties," Omega, Elsevier, vol. 67(C), pages 60-80.
    6. Xiyang Lei & Yongjun Li & Qiwei Xie & Liang Liang, 2015. "Measuring Olympics achievements based on a parallel DEA approach," Annals of Operations Research, Springer, vol. 226(1), pages 379-396, March.
    7. Y. c{C}inar, 2016. "Research and Teaching Efficiencies of Turkish Universities with Heterogeneity Considerations: Application of Multi-Activity DEA and DEA by Sequential Exclusion of Alternatives Methods," Papers 1701.07318, arXiv.org.
    8. Barnum, Darold T. & Karlaftis, Matthew G. & Tandon, Sonali, 2011. "Improving the efficiency of metropolitan area transit by joint analysis of its multiple providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1160-1176.
    9. Daraio, Cinzia & Diana, Marco & Di Costa, Flavia & Leporelli, Claudio & Matteucci, Giorgio & Nastasi, Alberto, 2016. "Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research," European Journal of Operational Research, Elsevier, vol. 248(1), pages 1-20.
    10. Saeedi, Hamid & Behdani, Behzad & Wiegmans, Bart & Zuidwijk, Rob, 2019. "Assessing the technical efficiency of intermodal freight transport chains using a modified network DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 66-86.
    11. Anand Venkatesh & Shivam Kushwaha, 2017. "Measuring technical efficiency of passenger bus companies in India: a non-radial data envelopment analysis approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 706-723, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Miin Yu & Chih-Ku Fan, 2006. "Measuring the Cost Effectiveness of Multimode Bus Transit in the Presence of Accident Risks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 29(5), pages 383-407, July.
    2. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    3. Barnum, Darold T. & Karlaftis, Matthew G. & Tandon, Sonali, 2011. "Improving the efficiency of metropolitan area transit by joint analysis of its multiple providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1160-1176.
    4. Mehdi Soltanifar & Farhad Hosseinzadeh Lotfi & Hamid Sharafi & Sebastián Lozano, 2022. "Resource allocation and target setting: a CSW–DEA based approach," Annals of Operations Research, Springer, vol. 318(1), pages 557-589, November.
    5. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    6. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    7. Akram Dehnokhalaji & Mojtaba Ghiyasi & Pekka Korhonen, 2017. "Resource allocation based on cost efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1279-1289, October.
    8. A Z Milioni & J V G de Avellar & T N Rabello & G M de Freitas, 2011. "Hyperbolic frontier model: a parametric DEA approach for the distribution of a total fixed output," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1029-1037, June.
    9. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    10. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    11. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    12. Reuben Elan & Verma Bharat Bhushan & Bhat Ramesh, 2001. "Hospital Efficiency: An Empirical Analysis of District and Grant-in-Aid Hospitals in Gujarat," IIMA Working Papers WP2001-07-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Touati-Tliba, Mohamed, 2024. "Comparative performance of Algeria's education districts: The Influence of colonial legacy through cultural capital," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    14. C. Vaz & A. Camanho & R. Guimarães, 2010. "The assessment of retailing efficiency using Network Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 173(1), pages 5-24, January.
    15. S Lozano & G Villa, 2005. "Centralized DEA models with the possibility of downsizing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 357-364, April.
    16. Chen, Chih Cheng, 2017. "Measuring departmental and overall regional performance: applying the multi-activity DEA model to Taiwan׳s cities/counties," Omega, Elsevier, vol. 67(C), pages 60-80.
    17. HOSSEINZADEH LOTFI, Farhad & HATAMI-MARBINI, Adel & AGRELL, Per & GHOLAMI, Kobra, 2013. "Centralized resource reduction and target setting under DEA control," LIDAM Discussion Papers CORE 2013005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Kyuseok Lee & Kyuwan Choi, 2010. "Cross redundancy and sensitivity in DEA models," Journal of Productivity Analysis, Springer, vol. 34(2), pages 151-165, October.
    19. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    20. Chih-Ching Yang, 2017. "Measuring health indicators and allocating health resources: a DEA-based approach," Health Care Management Science, Springer, vol. 20(3), pages 365-378, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:15:y:2008:i:8:p:647-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.