IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v11y2004i7p453-457.html
   My bibliography  Save this article

A study of financial volatility forecasting techniques in the FTSE/ASE 20 index

Author

Listed:
  • K. Maris
  • G. Pantou
  • K. Nikolopoulos
  • E. PagourtzI
  • V. Assimakopoulos

Abstract

Forecasting financial market volatility is an important task that has absorbed the interest of many academics in the late twentieth and early twenty-first centuries. This strong interest of the academic world reflects the importance of volatility in several financial and business activities. Volatility forecast, crucially affects investment choice and is the most important parameter affecting prices of market listed options, of which trading volume has proliferated in the last years. The purpose of this article is to compare various volatility forecasting approaches using data on the Greek FTSE/ASE 20 stock index.

Suggested Citation

  • K. Maris & G. Pantou & K. Nikolopoulos & E. PagourtzI & V. Assimakopoulos, 2004. "A study of financial volatility forecasting techniques in the FTSE/ASE 20 index," Applied Economics Letters, Taylor & Francis Journals, vol. 11(7), pages 453-457.
  • Handle: RePEc:taf:apeclt:v:11:y:2004:i:7:p:453-457
    DOI: 10.1080/1350485042000189532
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/1350485042000189532&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350485042000189532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    2. K. Maris & K. Nikolopoulos & K. Giannelos & V. Assimakopoulos, 2007. "Options trading driven by volatility directional accuracy," Applied Economics, Taylor & Francis Journals, vol. 39(2), pages 253-260.
    3. repec:mfj:journl:v:16:y:2011:i:1-2:p:87-124 is not listed on IDEAS
    4. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
    5. Vicky Bamiatzi & Konstantinos Bozos & Konstantinos Nikolopoulos, 2010. "On the predictability of firm performance via simple time-series and econometric models: evidence from UK SMEs," Applied Economics Letters, Taylor & Francis Journals, vol. 17(3), pages 279-282, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    2. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
    3. López Menéndez, Ana Jesús & Pérez Suárez, Rigoberto, 2017. "Forecasting Performance and Information Measures. Revisiting the M-Competition /Evaluación de Predicciones y Medidas de Información. Reexamen de la M-Competición," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 299-314, Mayo.
    4. D’Ignazio, Alessio & Giovannetti, Emanuele, 2015. "Predicting internet commercial connectivity wars: The impact of trust and operators’ asymmetry," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1127-1137.
    5. Gary Madden & Joachim Tan, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
    6. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
    7. Madden, Gary G & Coble-Neal, Grant, 2004. "Internet traffic dynamics," MPRA Paper 10827, University Library of Munich, Germany.
    8. Sofia-ira KTENA & Fotios PETROPOULOS & Polychronis KOUTSOLIAKOS & Dimitrios MICHOS & Vassilios ASSIMAKOPOULOS, 2011. "Forecasting Sales in a Sugar Factory," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(7), pages 1-12, December.
    9. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    10. Hyndman, Rob J., 2020. "A brief history of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
    11. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
    12. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    13. O'Connor, Marcus & Remus, William & Griggs, Kenneth, 2000. "Does updating judgmental forecasts improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 101-109.
    14. Ord, Keith & Hibon, Michele & Makridakis, Spyros, 2000. "The M3-Competition1," International Journal of Forecasting, Elsevier, vol. 16(4), pages 433-436.
    15. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    16. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    17. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    18. Anton A. Romanov & Aleksey A. Filippov & Valeria V. Voronina & Gleb Guskov & Nadezhda G. Yarushkina, 2021. "Modeling the Context of the Problem Domain of Time Series with Type-2 Fuzzy Sets," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
    19. Gardner Jr., Everette S. & Diaz-Saiz, Joaquin, 2008. "Exponential smoothing in the telecommunications data," International Journal of Forecasting, Elsevier, vol. 24(1), pages 170-174.
    20. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:11:y:2004:i:7:p:453-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.