IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2947-d682191.html
   My bibliography  Save this article

Modeling the Context of the Problem Domain of Time Series with Type-2 Fuzzy Sets

Author

Listed:
  • Anton A. Romanov

    (Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Aleksey A. Filippov

    (Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Valeria V. Voronina

    (Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Gleb Guskov

    (Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Nadezhda G. Yarushkina

    (Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

Abstract

Data analysis in the context of the features of the problem domain and the dynamics of processes are significant in various industries. Uncertainty modeling based on fuzzy logic allows building approximators for solving a large class of problems. In some cases, type-2 fuzzy sets in the model are used. The article describes constructing fuzzy time series models of the analyzed processes within the context of the problem domain. An algorithm for fuzzy modeling of the time series was developed. A new time series forecasting scheme is proposed. An illustrative example of the time series modeling is presented. The benefits of contextual modeling are demonstrated.

Suggested Citation

  • Anton A. Romanov & Aleksey A. Filippov & Valeria V. Voronina & Gleb Guskov & Nadezhda G. Yarushkina, 2021. "Modeling the Context of the Problem Domain of Time Series with Type-2 Fuzzy Sets," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2947-:d:682191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2947/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2947/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    2. Saeed-Ul Hassan & Iqra Safder & Anam Akram & Faisal Kamiran, 2018. "A novel machine-learning approach to measuring scientific knowledge flows using citation context analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 973-996, August.
    3. Dong, Ruijun & Pedrycz, Witold, 2008. "A granular time series approach to long-term forecasting and trend forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3253-3270.
    4. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    5. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madden, Gary & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
    2. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    3. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    4. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    5. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    6. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
    7. Hyndman, Rob J., 2020. "A brief history of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
    8. López Menéndez, Ana Jesús & Pérez Suárez, Rigoberto, 2017. "Forecasting Performance and Information Measures. Revisiting the M-Competition /Evaluación de Predicciones y Medidas de Información. Reexamen de la M-Competición," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 299-314, Mayo.
    9. Gary Madden & Joachim Tan, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
    10. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    11. Madden, Gary G & Coble-Neal, Grant, 2004. "Internet traffic dynamics," MPRA Paper 10827, University Library of Munich, Germany.
    12. Sofia-ira KTENA & Fotios PETROPOULOS & Polychronis KOUTSOLIAKOS & Dimitrios MICHOS & Vassilios ASSIMAKOPOULOS, 2011. "Forecasting Sales in a Sugar Factory," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(7), pages 1-12, December.
    13. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
    14. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    15. Madden, Gary G & Coble-Neal, Grant, 2005. "Forecasting international bandwidth capability," MPRA Paper 10822, University Library of Munich, Germany.
    16. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    17. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    18. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    19. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    20. Gardner Jr., Everette S. & Diaz-Saiz, Joaquin, 2008. "Exponential smoothing in the telecommunications data," International Journal of Forecasting, Elsevier, vol. 24(1), pages 170-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2947-:d:682191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.