IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v72y2018i1p72-79.html
   My bibliography  Save this article

Modeling Offensive Player Movement in Professional Basketball

Author

Listed:
  • Steven Wu
  • Luke Bornn

Abstract

The 2013 arrival of SportVU player tracking data in all NBA arenas introduced an overwhelming amount of on-court information—information which the league is still learning how to maximize for insights into player performance and basketball strategy. The data contain the spatial coordinates for the ball and every player on the court for 25 frames per second, which opens up avenues of player and team performance analysis that was not possible before this technology existed. This article serves as a step-by-step guide for how to leverage a data feed from SportVU for one NBA game into visualizable components that can model any player's movement on offense. We detail some utility functions that are helpful for manipulating SportVU data before applying it to the task of visualizing player offensive movement. We conclude with visualizations of the resulting output for one NBA game, as well as what the results look like aggregated across an entire season for three NBA stars with very different offensive tendencies.

Suggested Citation

  • Steven Wu & Luke Bornn, 2018. "Modeling Offensive Player Movement in Professional Basketball," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 72-79, January.
  • Handle: RePEc:taf:amstat:v:72:y:2018:i:1:p:72-79
    DOI: 10.1080/00031305.2017.1395365
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2017.1395365
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2017.1395365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    2. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    3. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallepalle Sarah & Yurko Ronald & Pelechrinis Konstantinos & Ventura Samuel L., 2020. "Extracting NFL tracking data from images to evaluate quarterbacks and pass defenses," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 95-120, June.
    2. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    3. Deshpande Sameer K. & Evans Katherine, 2020. "Expected hypothetical completion probability," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 85-94, June.
    4. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    5. Kęstutis Matulaitis & Tomas Bietkis, 2021. "Prediction of Offensive Possession Ends in Elite Basketball Teams," IJERPH, MDPI, vol. 18(3), pages 1-11, January.
    6. Luca De Angelis & J. James Reade, 2023. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Annals of Operations Research, Springer, vol. 325(1), pages 391-418, June.
    7. Galeano, Javier & Gómez, Miguel-Ángel & Rivas, Fernando & Buldú, Javier M., 2022. "Using Markov chains to identify player’s performance in badminton," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    8. McHale, Ian G. & Holmes, Benjamin, 2023. "Estimating transfer fees of professional footballers using advanced performance metrics and machine learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 389-399.
    9. Floyd Calvin Michael & Hoffman Matthew & Fokoue Ernest, 2020. "Shot-by-shot stochastic modeling of individual tennis points," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(1), pages 57-71, March.
    10. Ali Cakmak & Ali Uzun & Emrullah Delibas, 2018. "Computational Modeling Of Pass Effectiveness In Soccer," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-28, May.
    11. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    12. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
    13. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.
    14. Yurko Ronald & Matano Francesca & Richardson Lee F. & Granered Nicholas & Pospisil Taylor & Pelechrinis Konstantinos & Ventura Samuel L., 2020. "Going deep: models for continuous-time within-play valuation of game outcomes in American football with tracking data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 163-182, June.
    15. Luca De Angelis & J. James Reade, 2022. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Economics Discussion Papers em-dp2022-01, Department of Economics, University of Reading.
    16. Marius Ötting & Dimitris Karlis, 2023. "Football tracking data: a copula-based hidden Markov model for classification of tactics in football," Annals of Operations Research, Springer, vol. 325(1), pages 167-183, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:72:y:2018:i:1:p:72-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.