IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v69y2015i3p191-200.html
   My bibliography  Save this article

Understanding and Addressing the Unbounded "Likelihood" Problem

Author

Listed:
  • Shiyao Liu
  • Huaiqing Wu
  • William Q. Meeker

Abstract

The joint probability density function, evaluated at the observed data, is commonly used as the likelihood function to compute maximum likelihood estimates. For some models, however, there exist paths in the parameter space along which this density-approximation likelihood goes to infinity and maximum likelihood estimation breaks down. In all applications, however, observed data are really discrete due to the round-off or grouping error of measurements. The "correct likelihood" based on interval censoring can eliminate the problem of an unbounded likelihood. This article categorizes the models leading to unbounded likelihoods into three groups and illustrates the density-approximation breakdown with specific examples. Although it is usually possible to infer how given data were rounded, when this is not possible, one must choose the width for interval censoring, so we study the effect of the round-off on estimation. We also give sufficient conditions for the joint density to provide the same maximum likelihood estimate as the correct likelihood, as the round-off error goes to zero.

Suggested Citation

  • Shiyao Liu & Huaiqing Wu & William Q. Meeker, 2015. "Understanding and Addressing the Unbounded "Likelihood" Problem," The American Statistician, Taylor & Francis Journals, vol. 69(3), pages 191-200, August.
  • Handle: RePEc:taf:amstat:v:69:y:2015:i:3:p:191-200
    DOI: 10.1080/00031305.2014.1003968
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2014.1003968
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2014.1003968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    2. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hintz, Erik & Hofert, Marius & Lemieux, Christiane, 2021. "Normal variance mixtures: Distribution, density and parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    2. Heather Shappell & Sean L. Simpson, 2022. "Discussion on “Distributional independent component analysis for diverse neuroimaging modalities” by Ben Wu, Subhadip Pal, Jian Kang, and Ying Guo," Biometrics, The International Biometric Society, vol. 78(3), pages 1106-1108, September.
    3. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    4. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    5. Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
    6. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    7. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    8. Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
    9. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    10. Kasa, Siva Rajesh & Rajan, Vaibhav, 2022. "Improved Inference of Gaussian Mixture Copula Model for Clustering and Reproducibility Analysis using Automatic Differentiation," Econometrics and Statistics, Elsevier, vol. 22(C), pages 67-97.
    11. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Testing the Order of Multivariate Normal Mixture Models," CIRJE F-Series CIRJE-F-1044, CIRJE, Faculty of Economics, University of Tokyo.
    12. Ray, Surajit & Ren, Dan, 2012. "On the upper bound of the number of modes of a multivariate normal mixture," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 41-52.
    13. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    14. Mingxing He & Jiahua Chen, 2022. "Consistency of the MLE under a two-parameter Gamma mixture model with a structural shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 951-975, November.
    15. Xuwen Zhu & Volodymyr Melnykov, 2015. "Probabilistic assessment of model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 395-422, December.
    16. Sangkon Oh & Byungtae Seo, 2023. "Merging Components in Linear Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 25-51, April.
    17. Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
    18. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    19. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    20. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:69:y:2015:i:3:p:191-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.