IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947321000098.html
   My bibliography  Save this article

Normal variance mixtures: Distribution, density and parameter estimation

Author

Listed:
  • Hintz, Erik
  • Hofert, Marius
  • Lemieux, Christiane

Abstract

Efficient algorithms for computing the distribution function, (log-)density function and for estimating the parameters of multivariate normal variance mixtures are introduced. For the evaluation of the distribution function, randomized quasi-Monte Carlo (RQMC) methods are utilized in a way that improves upon existing methods proposed for the special case of normal and t distributions. For evaluating the log-density function, an adaptive RQMC algorithm that similarly exploits the superior convergence properties of RQMC methods is introduced. This allows the parameter estimation task to be accomplished via an expectation–maximization-like algorithm where all weights and log-densities are numerically estimated. Numerical examples demonstrate that the suggested algorithms are quite fast. Even for high dimensions around 1000 the distribution function can be estimated with moderate accuracy using only a few seconds of run time. Also, even log-densities around −100 can be estimated accurately and quickly. An implementation of all algorithms presented is available in the R package nvmix (version ≥0.0.4).

Suggested Citation

  • Hintz, Erik & Hofert, Marius & Lemieux, Christiane, 2021. "Normal variance mixtures: Distribution, density and parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947321000098
    DOI: 10.1016/j.csda.2021.107175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000098
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    2. Shiyao Liu & Huaiqing Wu & William Q. Meeker, 2015. "Understanding and Addressing the Unbounded "Likelihood" Problem," The American Statistician, Taylor & Francis Journals, vol. 69(3), pages 191-200, August.
    3. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyamalkumar, Nariankadu D. & Tao, Siyang, 2022. "t-copula from the viewpoint of tail dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    2. Asgar Ali & K. N. Badhani, 2023. "Tail risk, beta anomaly, and demand for lottery: what explains cross-sectional variations in equity returns?," Empirical Economics, Springer, vol. 65(2), pages 775-804, August.
    3. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    4. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    5. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    6. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    7. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    8. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    9. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    10. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    11. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    12. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    13. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    14. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    15. Battulga Gankhuu, 2022. "Merton's Default Risk Model for Private Company," Papers 2208.01974, arXiv.org.
    16. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    17. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    18. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    19. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    20. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947321000098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.