IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v82y2020i1d10.1007_s13171-018-0156-4.html
   My bibliography  Save this article

On the Construction of Unbiased Estimators for the Group Testing Problem

Author

Listed:
  • Gregory Haber

    (University of Maryland, Baltimore County)

  • Yaakov Malinovsky

    (University of Maryland, Baltimore County)

Abstract

Debiased estimation has long been an area of research in the group testing literature. This has led to the development of several estimators with the goal of bias minimization and, recently, an unbiased estimator based on sequential binomial sampling. Previous research, however, has focused heavily on the simple case where no misclassification is assumed and only one trait is to be tested. In this paper, we consider the problem of unbiased estimation in these broader areas, giving constructions of such estimators for several cases. We show that, outside of the standard case addressed previously in the literature, it is impossible to find any proper unbiased estimator, that is, an estimator giving only values in the parameter space. This is shown to hold generally under any binomial or multinomial sampling plans.

Suggested Citation

  • Gregory Haber & Yaakov Malinovsky, 2020. "On the Construction of Unbiased Estimators for the Group Testing Problem," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 220-241, February.
  • Handle: RePEc:spr:sankha:v:82:y:2020:i:1:d:10.1007_s13171-018-0156-4
    DOI: 10.1007/s13171-018-0156-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-018-0156-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-018-0156-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    2. Graham Hepworth & Ray Watson, 2009. "Debiased estimation of proportions in group testing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 105-121, February.
    3. Graham Hepworth & Brad J. Biggerstaff, 2017. "Bias Correction in Estimating Proportions by Pooled Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 602-614, December.
    4. Juan Ding & Wenjun Xiong, 2015. "Robust group testing for multiple traits with misclassification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2115-2125, October.
    5. Shih-Hao Huang & Mong-Na Lo Huang & Kerby Shedden & Weng Kee Wong, 2017. "Optimal group testing designs for estimating prevalence with uncertain testing errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1547-1563, November.
    6. Aiyi Liu & Chunling Liu & Zhiwei Zhang & Paul S. Albert, 2012. "Optimality of group testing in the presence of misclassification," Biometrika, Biometrika Trust, vol. 99(1), pages 245-251.
    7. M. Hung & William H. Swallow, 1999. "Robustness of Group Testing in the Estimation of Proportions," Biometrics, The International Biometric Society, vol. 55(1), pages 231-237, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).
    2. Graham Hepworth & Brad J. Biggerstaff, 2021. "Bias Correction in Estimating Proportions by Imperfect Pooled Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 90-104, March.
    3. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    4. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    5. Xiong, Wenjun & Ding, Juan, 2015. "Robust procedures for experimental design in group testing considering misclassification," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 35-41.
    6. Wei Zhang & Aiyi Liu & Qizhai Li & Paul S. Albert, 2020. "Nonparametric estimation of distributions and diagnostic accuracy based on group‐tested results with differential misclassification," Biometrics, The International Biometric Society, vol. 76(4), pages 1147-1156, December.
    7. Jie Mi, 2019. "Some limit results in estimation of proportion based on group testing," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 1021-1038, November.
    8. Graham Hepworth & Brad J. Biggerstaff, 2017. "Bias Correction in Estimating Proportions by Pooled Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 602-614, December.
    9. Tarun Jain & Bijendra Nath Jain, 2021. "Infection Testing at Scale: An Examination of Pooled Testing Diagnostics," Vikalpa: The Journal for Decision Makers, , vol. 46(1), pages 13-26, March.
    10. Christopher R. Bilder & Joshua M. Tebbs & Christopher S. McMahan, 2019. "Informative group testing for multiplex assays," Biometrics, The International Biometric Society, vol. 75(1), pages 278-288, March.
    11. Shih-Hao Huang & Mong-Na Lo Huang & Kerby Shedden & Weng Kee Wong, 2017. "Optimal group testing designs for estimating prevalence with uncertain testing errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1547-1563, November.
    12. Jiejian Feng & Michael Zhang, 2017. "Reducing cost and abandoned E-components in incomplete identification," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 281-290, March.
    13. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    14. Lipnowski, Elliot & Ravid, Doron, 2021. "Pooled testing for quarantine decisions," Journal of Economic Theory, Elsevier, vol. 198(C).
    15. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev & Yuan Hu, 2023. "Unifying Market Microstructure and Dynamic Asset Pricing," Papers 2304.02356, arXiv.org, revised Feb 2024.
    16. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    17. Yaakov Malinovsky & Paul S. Albert, 2015. "A Note on the Minimax Solution for the Two-Stage Group Testing Problem," The American Statistician, Taylor & Francis Journals, vol. 69(1), pages 45-52, February.
    18. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    19. Shaul K. Bar‐Lev & Onno Boxma & Andreas Löpker & Wolfgang Stadje & Frank A. Van der Duyn Schouten, 2012. "Group testing procedures with quantitative features and incomplete identification," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 39-51, February.
    20. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:82:y:2020:i:1:d:10.1007_s13171-018-0156-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.