IDEAS home Printed from https://ideas.repec.org/a/ssi/jouesi/v7y2020i3p1580-1596.html
   My bibliography  Save this article

Modeling cryptocurrencies volatility using GARCH models: a comparison based on Normal and Student's T-Error distribution

Author

Listed:
  • Shazia Salamat

    (Liaoning Technical University, China)

  • Niu Lixia

    (Liaoning Technical University, China)

  • Sobia Naseem

    (Liaoning Technical University, China)

  • Muhammad Mohsin

    (Liaoning Technical University, China)

  • Muhammad Zia-ur-Rehman

    (National Textile University, Pakistan)

  • Sajjad Ahmad Baig

    (National Textile University, Pakistan)

Abstract

This study measures the volatility of cryptocurrency by utilizing the symmetric (GARCH 1,1) and asymmetric (EGARCH, TGARCH, PGARCH) model of GARCH family using a daily database designated in different digital monetary standards. The results for an explicit set of currencies for entire period provide evidence of volatile nature of cryptocurrency and in most of the cases, the PGARCH is a better-fitted model with student’s t distribution. The findings show positive shocks heavily affected conditional volatility as a contrast with negative stuns. Those additional analyses can be provided further support their findings and worthwhile information for economic thespians who are engrossed in adding cryptocurrency to their equity portfolios or are snooping about the capabilities of cryptocurrency as a financial asset.

Suggested Citation

  • Shazia Salamat & Niu Lixia & Sobia Naseem & Muhammad Mohsin & Muhammad Zia-ur-Rehman & Sajjad Ahmad Baig, 2020. "Modeling cryptocurrencies volatility using GARCH models: a comparison based on Normal and Student's T-Error distribution," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 1580-1596, March.
  • Handle: RePEc:ssi:jouesi:v:7:y:2020:i:3:p:1580-1596
    DOI: 10.9770/jesi.2020.7.3(11)
    as

    Download full text from publisher

    File URL: https://jssidoi.org/jesi/uploads/articles/27/Salamat_Modeling_cryptocurrencies_volatility_using_GARCH_models_a_comparison_based_on_Normal_and_Students_TError_distribution.pdf
    Download Restriction: no

    File URL: https://jssidoi.org/jesi/article/477
    Download Restriction: no

    File URL: https://libkey.io/10.9770/jesi.2020.7.3(11)?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Kovačić, Zlatko, 2007. "Forecasting volatility: Evidence from the Macedonian stock exchange," MPRA Paper 5319, University Library of Munich, Germany.
    3. Shaw, Charles, 2018. "Conditional heteroskedasticity in crypto-asset returns," MPRA Paper 90437, University Library of Munich, Germany.
    4. Charles Shaw, 2018. "Conditional heteroskedasticity in crypto-asset returns," Papers 1804.07978, arXiv.org, revised Dec 2018.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    7. Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
    8. Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Arashi & Mohammad Mahdi Rounaghi, 2022. "Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model," Future Business Journal, Springer, vol. 8(1), pages 1-12, December.
    2. Zdravka Aljinović & Branka Marasović & Tea Šestanović, 2021. "Cryptocurrency Portfolio Selection—A Multicriteria Approach," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    3. Muhammad MOHSIN & Sobia NASEEM & Larisa IVAȘCU & Lucian-Ionel CIOCA & Muddassar SARFRAZ & Nicolae Cristian STĂNICĂ, 2021. "Gauging the Effect of Investor Sentiment on Cryptocurrency Market: An Analysis of Bitcoin Currency," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 87-102, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    2. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    3. Klaus Grobys, 2021. "When the blockchain does not block: on hackings and uncertainty in the cryptocurrency market," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1267-1279, August.
    4. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    5. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.
    6. Naseem Al Rahahleh & Robert Kao, 2018. "Forecasting Volatility: Evidence from the Saudi Stock Market," JRFM, MDPI, vol. 11(4), pages 1-18, November.
    7. Giam Quang Do & Michael Mcaleer & Songsak Sriboonchitta, 2009. "Effects of international gold market on stock exchange volatility: evidence from asean emerging stock markets," Economics Bulletin, AccessEcon, vol. 29(2), pages 599-610.
    8. Muhammad Ahsanuddin & Tayyab Raza Fraz & Samreen Fatima, 2019. "Studying the Volatility of Pakistan Stock Exchange and Shanghai Stock Exchange Markets in the Light of CPEC: An Application of GARCH and EGARCH Modelling," International Journal of Sciences, Office ijSciences, vol. 8(03), pages 125-132, March.
    9. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    10. Zhang, Zijing & Zhang, Hong-Kun, 2016. "The dynamics of precious metal markets VaR: A GARCHEVT approach," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 14-27.
    11. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    12. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    13. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    14. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    15. Qiang Xia & Heung Wong & Jinshan Liu & Rubing Liang, 2017. "Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 353-372, October.
    16. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    17. Obanya, Praise Otito & Seitshiro, Modisane & Olivier, Carel Petrus & Verster, Tanja, 2024. "A permutation entropy analysis of Bitcoin volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    18. Chappell, Daniel, 2018. "Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models," MPRA Paper 90682, University Library of Munich, Germany.
    19. Aharon, David Y. & Butt, Hassan Anjum & Jaffri, Ali & Nichols, Brian, 2023. "Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks," International Review of Financial Analysis, Elsevier, vol. 87(C).
    20. Guo, Zi-Yi, 2022. "Risk management of Bitcoin futures with GARCH models," Finance Research Letters, Elsevier, vol. 45(C).

    More about this item

    Keywords

    cryptocurrency; GARCH models; normal distribution; student's T distribution;
    All these keywords.

    JEL classification:

    • B26 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Financial Economics
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssi:jouesi:v:7:y:2020:i:3:p:1580-1596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuela Tvaronaviciene (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.