IDEAS home Printed from https://ideas.repec.org/a/spt/stecon/v8y2019i4f8_4_1.html
   My bibliography  Save this article

A Three-Step Nonparametric Estimation of Conditional Value-At-Risk Admitting a Location-Scale Model

Author

Listed:
  • Emmanuel Torsen
  • Peter N. Mwita
  • Joseph K. Mung’atu

Abstract

Financial institutions owners and regulators are concerned majorly about risk analysis, Value-at-Risk (VaR) is one of the most popular and common measures of risk used in finance, measures the down-side risk and is determined for a given probability level. In this paper, we consider the problem of estimating conditional Value-at-Risk via the nonparametric method and have proposed a three-step nonparametric estimator for conditional Value-at-Risk. The returns are assumed to have a location-scale model where the function of the error innovations is assumed unknown. The asymptotic properties of the proposed estimator were established, a simulation study was also conducted to confirm the properties. Application to real data was carried out, TOTAL stocks quoted on the Nigerian Stock Exchange using daily closing prices for covering the period between January 02, 2008 to December 29, 2017 trading days was used to illustrate the applicability of the estimator.Keywords: Location-Scale Model; Nonparametric Estimation; Three-Step; Conditional Value-at-Risk

Suggested Citation

  • Emmanuel Torsen & Peter N. Mwita & Joseph K. Mung’atu, 2019. "A Three-Step Nonparametric Estimation of Conditional Value-At-Risk Admitting a Location-Scale Model," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(4), pages 1-1.
  • Handle: RePEc:spt:stecon:v:8:y:2019:i:4:f:8_4_1
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JSEM%2fVol%208_4_1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel Torsen & Peter N. Mwita & Joseph K. Mungatu, 2018. "Nonparametric Estimation of the Error Functional of a Location-Scale Model," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 7(4), pages 1-1.
    2. Emmanuel Torsen & Lema Logamou Seknewna, 2019. "Bootstrapping Nonparametric Prediction Intervals for Conditional Value-at-Risk with Heteroscedasticity," Journal of Probability and Statistics, Hindawi, vol. 2019, pages 1-6, May.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    5. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    6. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    7. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    8. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    9. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    2. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    3. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    4. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    5. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    6. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    7. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    8. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    9. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    10. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    11. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    12. William A. Brock & Blake LeBaron, 1990. "Liquidity Constraints in Production-Based Asset-Pricing Models," NBER Chapters, in: Asymmetric Information, Corporate Finance, and Investment, pages 231-256, National Bureau of Economic Research, Inc.
    13. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    14. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    15. David G. McMillan, 2003. "Non‐linear Predictability of UK Stock Market Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 557-573, December.
    16. David M. Frankel, 2008. "Adaptive Expectations And Stock Market Crashes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 595-619, May.
    17. Fernando Rubio, 2005. "Estrategias Cuantitativas De Valor Y Retornos Por Accion De Largo," Finance 0503029, University Library of Munich, Germany.
    18. Schwert, G. William, 2003. "Anomalies and market efficiency," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 15, pages 939-974, Elsevier.
    19. Lin, Wen-Ling, 1995. "Market closure and predictability of intradaily stock returns in the United States and Japan," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 19-44, March.
    20. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:stecon:v:8:y:2019:i:4:f:8_4_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.