A New Data-Driven Model to Predict Monthly Runoff at Watershed Scale: Insights from Deep Learning Method Applied in Data-Driven Model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-024-03907-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Omid Bozorg-Haddad & Mahboubeh Zarezadeh-Mehrizi & Mehri Abdi-Dehkordi & Hugo A. Loáiciga & Miguel A. Mariño, 2016. "A self-tuning ANN model for simulation and forecasting of surface flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2907-2929, July.
- Yutao Qi & Zhanao Zhou & Lingling Yang & Yining Quan & Qiguang Miao, 2019. "A Decomposition-Ensemble Learning Model Based on LSTM Neural Network for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4123-4139, September.
- Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3227-3241, June.
- Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
- Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
- Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
- Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
- M. Rajesh & Sachdeva Anishka & Pansari Satyam Viksit & Srivastav Arohi & S. Rehana, 2023. "Improving Short-range Reservoir Inflow Forecasts with Machine Learning Model Combination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 75-90, January.
- Amir Hamzeh Haghiabi, 2017. "Modeling River Mixing Mechanism Using Data Driven Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 811-824, February.
- Huazhu Xue & Hui Wu & Guotao Dong & Jianjun Gao, 2023. "A Hybrid Forecasting Model to Simulate the Runoff of the Upper Heihe River," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
- Omid Bozorg-Haddad & Pouria Yari & Mohammad Delpasand & Xuefeng Chu, 2022. "Reservoir operation under influence of the joint uncertainty of inflow and evaporation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2914-2940, February.
- Hongfa Wang & Xinjian Guan & Yu Meng & Zening Wu & Kun Wang & Huiliang Wang, 2023. "Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1275-1295, February.
- Mohammad Ehtearm & Hossein Ghayoumi Zadeh & Akram Seifi & Ali Fayazi & Majid Dehghani, 2023. "Predicting Hydropower Production Using Deep Learning CNN-ANN Hybridized with Gaussian Process Regression and Salp Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3671-3697, July.
- Ali Ahani & Mojtaba Shourian & Peiman Rahimi Rad, 2018. "Performance Assessment of the Linear, Nonlinear and Nonparametric Data Driven Models in River Flow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 383-399, January.
- Mehdi Kazemi & Omid Bozorg-Haddad & Elahe Fallah-Mehdipour & Xuefeng Chu, 2022. "Optimal water resources allocation in transboundary river basins according to hydropolitical consideration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1188-1206, January.
- Che, Zhongyuan & Peng, Chong & Yue, Chenxiao, 2024. "Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
More about this item
Keywords
Gated recurrent unit (GRU); Robust local mean decomposition (RLMD); Slime mould algorithm (SMA); Monthly runoff predication; Data-driven; Yiluo River Watershed;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:13:d:10.1007_s11269-024-03907-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.