IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i2d10.1007_s11269-017-1792-5.html
   My bibliography  Save this article

Performance Assessment of the Linear, Nonlinear and Nonparametric Data Driven Models in River Flow Forecasting

Author

Listed:
  • Ali Ahani

    (Shahid Beheshti University)

  • Mojtaba Shourian

    (Shahid Beheshti University)

  • Peiman Rahimi Rad

    (Shahid Beheshti University)

Abstract

In recent years, the data-driven modeling techniques have gained more attention in hydrology and water resources studies. River runoff estimation and forecasting are one of the research fields that these techniques have several applications in them. In the current study, four common data-driven modeling techniques including multiple linear regression, K-nearest neighbors, artificial neural networks and adaptive neuro-fuzzy inference systems have been used to form runoff forecasting models and then their results have been evaluated. Also, effects of using of some different scenarios for selecting predictor variables have been studied. It is evident from the results that using flow data of one or two month ago in the predictor variables dataset can improve accuracy of results. In addition, comparison of general performances of the modeling techniques shows superiority of results of KNN models among the studied models. Among selected models of the different techniques, the selected KNN model presented best performance with a linear correlation coefficient equal to 0.84 between observed flow data and predicted values and a RMSE equal to 2.64.

Suggested Citation

  • Ali Ahani & Mojtaba Shourian & Peiman Rahimi Rad, 2018. "Performance Assessment of the Linear, Nonlinear and Nonparametric Data Driven Models in River Flow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 383-399, January.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1792-5
    DOI: 10.1007/s11269-017-1792-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1792-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1792-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omid Bozorg-Haddad & Mahboubeh Zarezadeh-Mehrizi & Mehri Abdi-Dehkordi & Hugo A. Loáiciga & Miguel A. Mariño, 2016. "A self-tuning ANN model for simulation and forecasting of surface flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2907-2929, July.
    2. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    2. Alireza Emadi & Reza Sobhani & Hossein Ahmadi & Arezoo Boroomandnia & Sarvin Zamanzad-Ghavidel & Hazi Mohammad Azamathulla, 2022. "Multivariate modeling of agricultural river water abstraction via novel integrated-wavelet methods in various climatic conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4845-4871, April.
    3. MacMillan, Andrew & Schell, Kristen R. & Roughley, Colter, 2023. "A predictive model of velocity for local hydrokinetic power assessment based on remote sensing data," Renewable Energy, Elsevier, vol. 211(C), pages 285-295.
    4. Saeid Mehdizadeh, 2020. "Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 263-282, January.
    5. Ran-Ran He & Yuanfang Chen & Qin Huang & Zheng-Wei Pan & Yong Liu, 2020. "Predictability of Monthly Streamflow Time Series and its Relationship with Basin Characteristics: an Empirical Study Based on the MOPEX Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4991-5007, December.
    6. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    7. Yinghui Meng & Sultan Noman Qasem & Manouchehr Shokri & Shahab S, 2020. "Dimension Reduction of Machine Learning-Based Forecasting Models Employing Principal Component Analysis," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    8. Saeid Mehdizadeh & Ali Kozekalani Sales, 2018. "A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3001-3022, July.
    9. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Hamzeh Haghiabi, 2017. "Modeling River Mixing Mechanism Using Data Driven Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 811-824, February.
    2. Omid Bozorg-Haddad & Pouria Yari & Mohammad Delpasand & Xuefeng Chu, 2022. "Reservoir operation under influence of the joint uncertainty of inflow and evaporation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2914-2940, February.
    3. Mehdi Kazemi & Omid Bozorg-Haddad & Elahe Fallah-Mehdipour & Xuefeng Chu, 2022. "Optimal water resources allocation in transboundary river basins according to hydropolitical consideration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1188-1206, January.
    4. Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    5. Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
    6. Wei Li & Jianzhong Zhou & Huaiwei Sun & Kuaile Feng & Hairong Zhang & Muhammad Tayyab, 2017. "Impact of Distribution Type in Bayes Probability Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 961-977, February.
    7. Hakan Tongal & Martijn Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1792-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.