IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i11d10.1007_s11269-024-03871-3.html
   My bibliography  Save this article

Rainfall Extreme Indicators Trend and Meteorological Drought Changes Under Climate Change Scenarios

Author

Listed:
  • Mohammad Tavosi

    (Tarbiat Modares University)

  • Mehdi Vafakhah

    (Tarbiat Modares University)

  • Hengameh Shekohideh

    (Tarbiat Modares University)

  • Seyed Hamidreza Sadeghi

    (Tarbiat Modares University)

  • Vahid Moosavi

    (Tarbiat Modares University)

  • Ziyan Zheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qing Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

In the current study, three optimistic (SSP1-2.6), medium (SSP2-4.5), and pessimistic (SSP5-8.5) scenarios were used to examine changes in precipitation based on the sixth phase of Coupled Model Intercomparison Project (CMIP6) in the Gorganrood watershed over two time periods: the near future (2021–2060) and the far future (2061–2100). To do this, the rainfall of 27 meteorological stations was studied. Using the RClimdex software in the R software, precipitation extreme indicators (11 indicators) were determined for different scenarios and periods, and Mann-Kendall (MK) and Sen’s estimator tests were then used to detect the trend. The results showed that in the near future under SSP1-2.6, the indicators of consecutive dry days (CDD) and consecutive wet days (CWD) have a significant downward and upward trend, respectively. While in the SSP5-8.5, the indicators of maximum five-day rainfall (RX1day), CDD, number of very wet days (R95p) and total wet day precipitation (PRCPTOT) have a significant downward trend in some stations. Similarly, in the far future, in the SSP5-8.5, the trend of rainfall indicators is insignificant compared to the near future, but still a significant decreasing trend can be seen in R95p, R99p, and PRCPTOT. Z score index (ZI) values ​​in both future periods showed that drought peaks occurred in the optimistic scenario and drought peaks occurred in the pessimistic scenario, and almost normal conditions prevailed in the intermediate scenario. The results can be effective in policies to deal with global warming and climate change. Graphical Abstract

Suggested Citation

  • Mohammad Tavosi & Mehdi Vafakhah & Hengameh Shekohideh & Seyed Hamidreza Sadeghi & Vahid Moosavi & Ziyan Zheng & Qing Yang, 2024. "Rainfall Extreme Indicators Trend and Meteorological Drought Changes Under Climate Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4393-4413, September.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03871-3
    DOI: 10.1007/s11269-024-03871-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03871-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03871-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paola A. Arias & Juan Antonio Rivera & Anna A. Sörensson & Mariam Zachariah & Clair Barnes & Sjoukje Philip & Sarah Kew & Robert Vautard & Gerbrand Koren & Izidine Pinto & Maja Vahlberg & Roop Singh &, 2024. "Interplay between climate change and climate variability: the 2022 drought in Central South America," Climatic Change, Springer, vol. 177(1), pages 1-22, January.
    2. Morteza Miri & Tayeb Raziei & Mehran Zand & Mohammad Reza Kousari, 2023. "Synoptic aspects of two flash flood-inducing heavy rainfalls in southern Iran during 2019–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2655-2672, February.
    3. Dimitris Tigkas & Harris Vangelis & George Tsakiris, 2020. "Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4329-4343, November.
    4. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung Taek Chae & Eun-Sung Chung & Dongkyun Kim, 2024. "Evaluation of Optimized Multi-Model Ensembles for Extreme Precipitation Projection Considering Various Objective Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5865-5883, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruperto Ortiz-Gómez & Roberto S. Flowers-Cano & Guillermo Medina-García, 2022. "Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2471-2492, May.
    2. Laura Şmuleac & Ciprian Rujescu & Adrian Șmuleac & Florin Imbrea & Isidora Radulov & Dan Manea & Anișoara Ienciu & Tabita Adamov & Raul Pașcalău, 2020. "Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    3. Farman Ali & Bing-Zhao Li & Zulfiqar Ali, 2021. "Strengthening Drought Monitoring Module by Ensembling Auxiliary Information Based Varying Estimators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3235-3252, August.
    4. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2020. "Ability Assessment of the Stationary and Cyclostationary Time Series Models to Predict Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5009-5029, December.
    5. Farman Ali & Zulfiqar Ali & Bing-Zhao Li & Sadia Qamar & Amna Nazeer & Saba Riaz & Muhammad Asif Khan & Rabia Fayyaz & Javeria Nawaz Abbasi, 2022. "Exploring Regional Profile of Drought History- a New Procedure to Characterize and Evaluate Multi-Scaler Drought Indices Under Spatial Poisson Log-Normal Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2989-3005, July.
    6. Subhadarsini Das & Jew Das & N. V. Umamahesh, 2023. "A Non-Stationary Based Approach to Understand the Propagation of Meteorological to Agricultural Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2483-2504, May.
    7. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Elham Koohi, 2021. "Sensitivity Assessment to the Occurrence of Different Types of Droughts Using GIS and AHP Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3593-3615, September.
    8. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    9. Muhammad Waseem & Muhammad Ajmal & Joo Heon Lee & Tae-Woong Kim, 2016. "Multivariate Drought Assessment Considering the Antecedent Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4221-4231, September.
    10. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    11. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    12. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    13. Brunella Bonaccorso & David Peres & Antonio Castano & Antonino Cancelliere, 2015. "SPI-Based Probabilistic Analysis of Drought Areal Extent in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 459-470, January.
    14. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    15. Efrosyni Kanellou & Nicos Spyropoulos & Nicolas Dalezios, 2012. "Geoinformatic Intelligence Methodologies for Drought Spatiotemporal Variability in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1089-1106, March.
    16. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    17. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    18. Qiang Zhang & Tianyao Qi & Vijay Singh & Yongqin Chen & Mingzhong Xiao, 2015. "Regional Frequency Analysis of Droughts in China: A Multivariate Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1767-1787, April.
    19. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    20. Nicolas R. Dalezios & Nicholas Dercas & Nicos V. Spyropoulos & Emmanouil Psomiadis, 2019. "Remotely Sensed Methodologies for Crop Water Availability and Requirements in Precision Farming of Vulnerable Agriculture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1499-1519, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03871-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.