IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i12d10.1007_s11269-023-03558-1.html
   My bibliography  Save this article

Development of a Comprehensive Water Simulation Model for Water, Food, and Energy Nexus Analysis in Basin Scale

Author

Listed:
  • Elham Soleimanian

    (Concordia University)

  • Abbas Afshar

    (Iran University of Science & Technology)

  • Amir Molajou

    (Iran University of Science & Technology)

  • Mahdi Ghasemi

    (Iran University of Science & Technology)

Abstract

Water, food, and energy (WFE) systems are addressed with their complex interactions with each other. Some models are used to simulate WFE concept, but they cannot consider all nexus complexity. Based on author’s knowledge, there is still a lack of suitable model that can consider relationships inner each WFE sub-systems and between them in nexus concept. The CWSNeX in this study is specifically tailored for a comprehensive water simulation under the WFE nexus system on a basin scale. It benefits from a modular structure and considers the most important interrelations in water sub-system for addressing the gaps and issues in a holistic WFE nexus simulation. CWSNeX is implemented using the Python programming language and can be utilized both within a WFE nexus platform and as a stand-alone tool with time series data. When integrated into a nexus platform, it interacts with the food and energy sub-systems, exchanging information and outputs in each time step. The CWSNeX consists of quantitative and qualitative parts. In the quantitative part, it simulates evaporation, river routing, groundwater, reservoir operation rule, surface water, and groundwater exchange, withdrawal in demand sites, and in the qualitative part, it simulates Total Dissolved Solid (TDS) that is important for irrigation sites. To evaluate the performance of the CWSNeX model, data from the Sufi Chay basin in Iran is used. The goodness of fit criterion (NS, RMSE, R2, d-factor and p-factor) showed a good performance of each module.

Suggested Citation

  • Elham Soleimanian & Abbas Afshar & Amir Molajou & Mahdi Ghasemi, 2023. "Development of a Comprehensive Water Simulation Model for Water, Food, and Energy Nexus Analysis in Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4589-4621, September.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:12:d:10.1007_s11269-023-03558-1
    DOI: 10.1007/s11269-023-03558-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03558-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03558-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elham Fijani & Asghar Asghari Moghaddam & Frank T.-C. Tsai & Gokmen Tayfur, 2017. "Analysis and Assessment of Hydrochemical Characteristics of Maragheh-Bonab Plain Aquifer, Northwest of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 765-780, February.
    2. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Samaneh Ghafoori-Kharanagh & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "Participatory Water-Food-Energy Nexus Approach for Evaluation and Design of Groundwater Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3481-3495, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Herricks, Edwin, 2024. "Elevating urban sustainability: An intelligent framework for optimizing water-energy-food nexus synergies in metabolic landscapes," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naveed Ahmed & Haishen Lü & Shakeel Ahmed & Ghulam Nabi & Muhammad Abdul Wajid & Aamir Shakoor & Hafiz Umar Farid, 2021. "Irrigation Supply and Demand, Land Use/Cover Change and Future Projections of Climate, in Indus Basin Irrigation System, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Marzieh Samadi-Foroushani & Mohammad Javad Keyhanpour & Seyed Habib Musavi-Jahromi & Hossein Ebrahimi, 2022. "Integrated Water Resources Management Based on Water Governance and Water-food-energy Nexus through System Dynamics and Social Network Analyzing Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6093-6113, December.
    3. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    4. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Majid Rezaei & Hosein Alizadeh & Majid Ehtiat, 2019. "Process-based Analysis of the Climate Change Impacts on Primary Hydro-Salinity of the River Ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4287-4302, September.
    6. Esmaeil Asadi & Mohammad Isazadeh & Saeed Samadianfard & Mohammad Firuz Ramli & Amir Mosavi & Narjes Nabipour & Shahaboddin Shamshirband & Eva Hajnal & Kwok-Wing Chau, 2019. "Groundwater Quality Assessment for Sustainable Drinking and Irrigation," Sustainability, MDPI, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:12:d:10.1007_s11269-023-03558-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.