IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i11d10.1007_s11269-023-03555-4.html
   My bibliography  Save this article

Drought Assessment Using Gridded Data Sources in Data-Poor Areas with Different Aridity Conditions

Author

Listed:
  • Milad Nouri

    (Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO))

Abstract

This study evaluated the accuracy of alternative satellite and reanalysis datasets in estimating the Standardized Precipitation Evapotranspiration Index (SPEI). Eight alternate datasets consisting of the gridded precipitation data acquired from IMERG, TRMM, ERA5-Land (ERA5L), and GLDAS and the reference evapotranspiration (ETo) computed by using the ERA5L and GLDAS reanalysis data were exploited. The results revealed that the combination of IMERG precipitation and ERA5L-estimated ETo (IME) outperformed the other alternative data sources in simulating drought severity. The IME also accurately simulated dry months and the length of the most extended dry spells for the majority of the studied regions. This highlights the potential benefits of integrating data sources, which appear to yield better results compared to using single-source datasets. The SPEI estimated by the alternative datasets showed poor agreement with the SPEI calculated based on meteorological records in the hyper-arid/arid areas. However, better results were achieved for the semi-arid and sub-humid/humid conditions. Moreover, the long-term droughts were simulated with higher accuracy relative to short- and mid-term dry epochs. The errors in ETo estimates contribute more significantly to the errors in SPEI for the hyper-arid/arid and semi-arid regions. However, the errors in precipitation products had a greater influence on the errors in SPEI estimates in the sub-humid/humid environments. These findings suggest that improving the quality of reanalysis data used for modeling ETo is likely to considerably enhance the accuracy of SPEI estimates in the semi-arid and arid/hyper-arid environments. Overall, this study provides a reliable guide for drought identification under data limitation.

Suggested Citation

  • Milad Nouri, 2023. "Drought Assessment Using Gridded Data Sources in Data-Poor Areas with Different Aridity Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4327-4343, September.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03555-4
    DOI: 10.1007/s11269-023-03555-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03555-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03555-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruperto Ortiz-Gómez & Roberto S. Flowers-Cano & Guillermo Medina-García, 2022. "Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2471-2492, May.
    2. Javad Bazrafshan, 2017. "Effect of Air Temperature on Historical Trend of Long-Term Droughts in Different Climates of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4683-4698, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    2. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Yudong Wang & Guibin Pang & Tianyu Wang & Xin Cong & Weiyan Pan & Xin Fu & Xin Wang & Zhenghe Xu, 2024. "Future Reference Evapotranspiration Trends in Shandong Province, China: Based on SAO-CNN-BiGRU-Attention and CMIP6," Agriculture, MDPI, vol. 14(9), pages 1-22, September.
    5. Abdol Rassoul Zarei & Marzieh Mokarram & Mohammad Reza Mahmoudi, 2023. "Comparison of the capability of the Meteorological and Remote Sensing Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 769-796, January.
    6. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    7. Javad Bazrafshan & Majid Cheraghalizadeh & Kokab Shahgholian, 2022. "Development of a Non-stationary Standardized Precipitation Evapotranspiration Index (NSPEI) for Drought Monitoring in a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3523-3543, August.
    8. Javad Bazrafshan & Somayeh Hejabi, 2018. "A Non-Stationary Reconnaissance Drought Index (NRDI) for Drought Monitoring in a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2611-2624, June.
    9. Asadollah Khoorani & Shahram Balaghi & Fakhrodin Mohammadi, 2024. "Projecting drought trends and hot spots across Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9489-9502, September.
    10. Femin C. Varghese & Subhasis Mitra, 2024. "Investigating the Role of Driving Variables on ETo Variability and “Evapotranspiration Paradox” Across the Indian Subcontinent Under Historic and Future Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5723-5737, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03555-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.