IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i7d10.1007_s11269-022-03137-w.html
   My bibliography  Save this article

Groundwater Remediation Design Underpinned By Coupling Evolution Algorithm With Deep Belief Network Surrogate

Author

Listed:
  • Yu Chen

    (Sichuan University
    Sichuan University)

  • Guodong Liu

    (Sichuan University
    Sichuan University)

  • Xiaohua Huang

    (Sichuan University
    Sichuan University)

  • Yuchuan Meng

    (Sichuan University
    Sichuan University)

Abstract

Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of scalability and accuracy when the input–output relationship is highly nonlinear or high-dimensional. To tackle these problems, we herein propose a novel simulation–optimization method that embeds the deep learning deep belief network (DBN) into the particle swarm optimization (PSO) algorithm for groundwater remediation design. Firstly, a numerical simulation model based on MODFLOW and MT3DMS is established to describe the impact on the pollution environmental fate of various implementations of the remediation strategy. The input dataset to train DBN is comprised of various remediation strategies that evolve automatically in the PSO iterations, and the corresponding output dataset constituted of contaminant concentration at observation wells is garnered by executing the simulation model. In the optimization process, the DBN is retrained in an adaptive pattern to enhance prediction accuracy, selectively substituting for the original simulation model to alleviate the computational burden. Additionally, the PSO algorithm undergoes discretization and collision averting within each individual to adapt to the specific remediation task. The results reveal that the proposed method manifests satisfactory convergence behaviour and accuracy, capable of unburdening a considerable proportion (68.8%) of the time consumption for optimal groundwater remediation design.

Suggested Citation

  • Yu Chen & Guodong Liu & Xiaohua Huang & Yuchuan Meng, 2022. "Groundwater Remediation Design Underpinned By Coupling Evolution Algorithm With Deep Belief Network Surrogate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2223-2239, May.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03137-w
    DOI: 10.1007/s11269-022-03137-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03137-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03137-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuangsheng Zhang & Jing Qiang & Hanhu Liu & Xiaonan Wang & Junjie Zhou & Dongliang Fan, 2022. "An Adaptive Dynamic Kriging Surrogate Model for Application to the Optimal Remediation of Contaminated Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5011-5032, October.
    2. Hossein Rezaei & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2020. "Reliability-Based Multi-Objective Optimization of Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3079-3097, August.
    3. Partha Majumder & T.I. Eldho, 2020. "Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 763-783, January.
    4. Sina Sadeghfam & Yousef Hassanzadeh & Rahman Khatibi & Ata Allah Nadiri & Marjan Moazamnia, 2019. "Groundwater Remediation through Pump-Treat-Inject Technology Using Optimum Control by Artificial Intelligence (OCAI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1123-1145, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangsheng Zhang & Jing Qiang & Hanhu Liu & Xiaonan Wang & Junjie Zhou & Dongliang Fan, 2022. "An Adaptive Dynamic Kriging Surrogate Model for Application to the Optimal Remediation of Contaminated Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5011-5032, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Qiuyan & Hajiyeva, Aytan Merdan, 2022. "Nexus between energy efficiency finance and renewable energy development: Empirical evidence from G-7 economies," Renewable Energy, Elsevier, vol. 195(C), pages 1077-1086.
    2. Ali Al-Maktoumi & Mohammad Mahdi Rajabi & Slim Zekri & Chefi Triki, 2021. "A Probabilistic Multiperiod Simulation–Optimization Approach for Dynamic Coastal Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3447-3462, September.
    3. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    4. Richard T. Lyons & Richard C. Peralta & Partha Majumder, 2020. "Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima," IJERPH, MDPI, vol. 17(3), pages 1-10, January.
    5. Partha Majumder & T.I. Eldho, 2020. "Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 763-783, January.
    6. Mojtaba Poursaeid & Amir Houssain Poursaeid & Saeid Shabanlou, 2022. "A Comparative Study of Artificial Intelligence Models and A Statistical Method for Groundwater Level Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1499-1519, March.
    7. Seyed Hassan Mirhashemi & Farhad Mirzaei & Parviz Haghighat Jou & Mehdi Panahi, 2022. "Evaluation of Four Tree Algorithms in Predicting and Investigating the Changes in Aquifer Depth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4607-4618, September.
    8. Laís Coelho Teixeira & Priscila Pacheco Mariani & Olavo Correa Pedrollo & Nilza Maria Castro & Vanessa Sari, 2020. "Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3709-3723, September.
    9. Elmira Valipour & Hamed Ketabchi & Reza Safari shali & Saeed Morid, 2023. "Equity, Social Welfare, and Economic Benefit Efficiency in the Optimal Allocation of Coastal Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2969-2990, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03137-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.