IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i7d10.1007_s11269-022-03130-3.html
   My bibliography  Save this article

Study on Conveyance Coefficient Influenced by Momentum Exchange Under Steady and Unsteady Flows in Compound Open Channels

Author

Listed:
  • Hamidreza Rahimi

    (Hohai University)

  • Saiyu Yuan

    (Hohai University
    Yangtze Institute for Conservation and Development)

  • Xiaonan Tang

    (Xi’an Jiaotong-Liverpool University)

  • Chunhui Lu

    (Hohai University
    Yangtze Institute for Conservation and Development)

  • Prateek Singh

    (Xi’an Jiaotong-Liverpool University)

  • Fariba Ahmadi Dehrashid

    (Bu-Ali Sina University)

Abstract

Many natural compound channels with differential stages play a vital role during high flow events in real-time. When a flood occurs, and water flows into floodplains, the flow structure becomes more complex because of the momentum transfer between sub-segments of the compound channel, caused by the large difference of velocities in different sub-segments. The conventional methods of discharge calculation based on conveyance coefficients of a single channel do not consider momentum transfer, resulting in inaccurate prediction for compound channels. This paper uses a new method of determining conveyance coefficient in compound channels to be incorporated in the two-dimensional analytical solution of the Reynolds averaged Navier–stokes equations for stage-discharge and hydrographs prediction. The proposed conveyance model for flood routing is obtained by solving 1D unsteady flow equations. The flow calculation considers the interaction between sub-segments of compound channels using the momentum equation for shallow water. The proposed model was evaluated to show that incorporating the momentum flux improves the predicted maximum discharge and flow depth in the output hydrographs of the unsteady flow. This result suggests that the proposed method can effectively determine the conveyance coefficient of the compound channel in steady and unsteady flow prediction.

Suggested Citation

  • Hamidreza Rahimi & Saiyu Yuan & Xiaonan Tang & Chunhui Lu & Prateek Singh & Fariba Ahmadi Dehrashid, 2022. "Study on Conveyance Coefficient Influenced by Momentum Exchange Under Steady and Unsteady Flows in Compound Open Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2179-2199, May.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03130-3
    DOI: 10.1007/s11269-022-03130-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03130-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03130-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "One Dimensional Hydraulic Flow Routing Incorporating a Variable Grain Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4599-4620, October.
    2. Pierfranco Costabile & Francesco Macchione, 2012. "Analysis of One-Dimensional Modelling for Flood Routing in Compound Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1065-1087, March.
    3. Niranjan Pramanik & Rabindra Panda & Dhrubajyoti Sen, 2010. "One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 835-852, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shriya K. Rathor & Abinash Mohanta & K. C. Patra, 2022. "Validation of Computational Fluid Dynamics Approach of Lateral Velocity Profile Due to Curvature Effect on Floodplain Levee of Two-stage Meandering Channel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5495-5520, November.
    2. Seyed Morteza Seyedian & Ozgur Kisi & Abbas Parsaie & Mojtaba Kashani, 2024. "Improving the Reliability of Compound Channel Discharge Prediction Using Machine Learning Techniques and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4685-4709, September.
    3. Rongqi Zhang & Shanghong Zhang & Xiaoxiong Wen & Zhu Jing, 2023. "Refined Scheduling Based on Dynamic Capacity Model for Short-term Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 21-35, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierfranco Costabile & Francesco Macchione & Luigi Natale & Gabriella Petaccia, 2015. "Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 181-204, May.
    2. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    3. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    4. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    5. Hriday Mani Kalita, 2020. "A Numerical Model for 1D Bed Morphology Calculations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4975-4989, December.
    6. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    7. Pawan Kumar Rai & C. T. Dhanya & B. R. Chahar, 2018. "Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1821-1840, July.
    8. Hriday Mani Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    9. Hriday Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    10. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    11. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    12. Lishuang Yao & Yang Peng & Xianliang Yu & Zhihong Zhang & Shiqi Luo, 2023. "Optimal Inversion of Manning’s Roughness in Unsteady Open Flow Simulations Using Adaptive Parallel Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 879-897, January.
    13. Pierfranco Costabile & Francesco Macchione, 2012. "Analysis of One-Dimensional Modelling for Flood Routing in Compound Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1065-1087, March.
    14. Francesco Macchione & Gianluca De Lorenzo & Pierfranco Costabile & Babak Razdar, 2016. "The Power Function for Representing the Reservoir Rating Curve: Morphological Meaning and Suitability for Dam Breach Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4861-4881, October.
    15. Cucchiaro, Sara & Straffelini, Eugenio & Chang, Kuo-Jen & Tarolli, Paolo, 2021. "Mapping vegetation-induced obstruction in agricultural ditches: A low-cost and flexible approach by UAV-SfM," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03130-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.