IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i12d10.1007_s11269-021-02922-3.html
   My bibliography  Save this article

Robust Hierarchical Sensor Optimization Placement Method for Leak Detection in Water Distribution System

Author

Listed:
  • Zukang Hu

    (Hohai University)

  • Wenlong Chen

    (Changjiang River Scientific Research Institute
    Changjiang River Scientific Research Institute)

  • Beqing Chen

    (Changjiang River Scientific Research Institute
    Changjiang River Scientific Research Institute)

  • Debao Tan

    (Hohai University
    Changjiang River Scientific Research Institute
    Changjiang River Scientific Research Institute)

  • Yu Zhang

    (Changjiang River Scientific Research Institute
    Changjiang River Scientific Research Institute)

  • Dingtao Shen

    (Changjiang River Scientific Research Institute
    Changjiang River Scientific Research Institute)

Abstract

The quality of sensor placement in water distribution systems (WDSs) has considerable impact on leak detection accuracy and identification efficiency. Sensor-placement optimization has long been a major issue in the research of WDS. Conventional hierarchical algorithms based on joint entropy have been widely applied to sensor-placement optimization in the engineering-safety monitoring field. Although such algorithms can effectively reduce information redundancy and are computationally very efficient, they fail to fully account for various practical failure scenarios. Sensor failures introduce bias into monitored data and disrupt the monitoring process, thereby compromising the monitoring performance of a given sensor network. To overcome this drawback, this study proposes a new optimal sensor-placement scheme for WDSs based on an improved hierarchical algorithm. The new optimization scheme works by sequentially selecting sensors using joint entropy as a sensor-placement objective function and fully considers various scenarios of a single-sensor failure to ensure minimal information entropy loss during sensor failure. Simulation is performed on an example network (i.e., Net 3 from EPANET), revealing that when a sensor fails, information entropy loss is 0.011 for conventional sensor-placement schemes, but it is only 0.007 for the improved scheme. Statistical analysis shows that the improved scheme has a higher robustness and adaptability for leak detection and identification, owing to the full consideration of various scenarios of a single-sensor failure.

Suggested Citation

  • Zukang Hu & Wenlong Chen & Beqing Chen & Debao Tan & Yu Zhang & Dingtao Shen, 2021. "Robust Hierarchical Sensor Optimization Placement Method for Leak Detection in Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3995-4008, September.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:12:d:10.1007_s11269-021-02922-3
    DOI: 10.1007/s11269-021-02922-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02922-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02922-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    2. Bruno Brentan & Silvia Carpitella & Daniel Barros & Gustavo Meirelles & Antonella Certa & Joaquín Izquierdo, 2021. "Water Quality Sensor Placement: A Multi-Objective and Multi-Criteria Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 225-241, January.
    3. Rejeesh Rayaroth & Sivaradje G, 2019. "Random Bagging Classifier and Shuffled Frog Leaping Based Optimal Sensor Placement for Leakage Detection in WDS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3111-3125, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianwei Mu & Yaqi Li & Ziyi Li & Luyue Wang & Haoqiang Tan & Chengzhi Zheng, 2021. "Improved Network Reliability Optimization Model with Head Loss for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2101-2114, May.
    2. Yu Shao & Yanxi Yu & Tingchao Yu & Shipeng Chu & Xiaowei Liu, 2019. "Leakage Control and Energy Consumption Optimization in the Water Distribution Network Based on Joint Scheduling of Pumps and Valves," Energies, MDPI, vol. 12(15), pages 1-18, August.
    3. Moslehi, Iman & Jalili Ghazizadeh, Mohammadreza & Yousefi-Khoshqalb, Ehsan, 2020. "An economic valuation model for alternative pressure management schemes in water distribution networks," Utilities Policy, Elsevier, vol. 67(C).
    4. Chi Zhang & Martin F. Lambert & Jinzhe Gong & Aaron C. Zecchin & Angus R. Simpson & Mark L. Stephens, 2020. "Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2807-2820, July.
    5. Mohammadi, Kamran, 2023. "Improved strategy management for WDNs: Integrated prioritization SWOT QSPM (IPSQ) method – Application to passive defense," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    6. Juan Li & Ying Wu & Wenjun Zheng & Changgang Lu, 2021. "A Model-Based Bayesian Framework for Pipeline Leakage Enumeration and Location Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4381-4397, October.
    7. Aditya Dinesh Gupta & Prerna Pandey & Andrés Feijóo & Zaher Mundher Yaseen & Neeraj Dhanraj Bokde, 2020. "Smart Water Technology for Efficient Water Resource Management: A Review," Energies, MDPI, vol. 13(23), pages 1-23, November.
    8. Jinzhe Gong & Martin F. Lambert & Mark L. Stephens & Benjamin S. Cazzolato & Chi Zhang, 2020. "Detection of Emerging through-Wall Cracks for Pipe Break Early Warning in Water Distribution Systems Using Permanent Acoustic Monitoring and Acoustic Wave Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2419-2432, June.
    9. Mohanaprasad Kothandaraman & Zijian Law & Morris A. G. Ezra & Chang Hong Pua & Uma Rajasekaran, 2022. "Water Pipeline Leak Measurement Using Wavelet Packet-based Adaptive ICA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1973-1989, April.
    10. Caterina Capponi & Silvia Meniconi & Pedro J. Lee & Bruno Brunone & Marco Cifrodelli, 2020. "Time-domain Analysis of Laboratory Experiments on the Transient Pressure Damping in a Leaky Polymeric Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 501-514, January.
    11. Guancheng Guo & Xipeng Yu & Shuming Liu & Xiyan Xu & Ziqing Ma & Xiaoting Wang & Yujun Huang & Kate Smith, 2020. "Novel Leakage Detection and Localization Method Based on Line Spectrum Pair and Cubic Interpolation Search," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3895-3911, September.
    12. Seyed Farhan Moosavian & Daryoosh Borzuei & Abolfazl Ahmadi, 2022. "Cost Analysis of Water Quality Assessment Using Multi-Criteria Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4843-4862, September.
    13. Alicia Benarroch & María Rodríguez-Serrano & Alejandra Ramírez-Segado, 2021. "New Water Culture versus the Traditional Design and Validation of a Questionnaire to Discriminate between Both," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    14. Tianwei Mu & Yan Lu & Haoqiang Tan & Haowen Zhang & Chengzhi Zheng, 2021. "Random Walks Partitioning and Network Reliability Assessing in Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2325-2341, June.
    15. Sanghoon Jun & Kevin E. Lansey, 2023. "Convolutional Neural Network for Burst Detection in Smart Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3729-3743, July.
    16. Jimmy H. Gutiérrez-Bahamondes & Daniel Mora-Melia & Bastián Valdivia-Muñoz & Fabián Silva-Aravena & Pedro L. Iglesias-Rey, 2023. "Infeasibility Maps: Application to the Optimization of the Design of Pumping Stations in Water Distribution Networks," Mathematics, MDPI, vol. 11(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:12:d:10.1007_s11269-021-02922-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.