IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i13d10.1007_s11269-020-02658-6.html
   My bibliography  Save this article

Robust Water Supply Chain Network Design under Uncertainty in Capacity

Author

Listed:
  • Marzieh Mozafari

    (Electronic Branch, Islamic Azad University)

  • Alireza Zabihi

    (Electronic Branch, Islamic Azad University)

Abstract

This paper focuses on the capacity uncertainty in water supply chains that occurs when facilities face disruption. A combination of scenario-based two-stage stochastic programming with the min-max robust optimization approach is proposed to optimize the water supply chain network design problem. In the first stage, the decisions are made on locations and capacities of reservoirs and water-treatment plants while recourse decisions including amount of water extraction, amount of water refinement, and consequently amount of water held in reservoirs are made at the second stage. The proposed robust two-stage stochastic programming model can help decision makers consider the impacts of uncertainties and analyze trade-offs between system cost and stability. The literature reveals that most exact methods are not able to tackle the computational complexity of mixed integer non-linear two-stage stochastic problems at large scale. Another contribution of this study is to propose two metaheuristics - a particle swarm optimization (PSO) and a bat algorithm (BA) - to solve the proposed model in large-scale networks efficiently in a reasonable time. The developed model is applied to several hypothetical cases of water resources management systems to evaluate the effectiveness of the model formulation and solution algorithms. Sensitivity analyses are also carried out to analyze the behavior of the model and the robustness approach under parameters variations.

Suggested Citation

  • Marzieh Mozafari & Alireza Zabihi, 2020. "Robust Water Supply Chain Network Design under Uncertainty in Capacity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4093-4112, October.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:13:d:10.1007_s11269-020-02658-6
    DOI: 10.1007/s11269-020-02658-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02658-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02658-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Yazdi, 2016. "Decomposition based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2749-2766, June.
    2. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.
    3. J. Pablo Ortiz-Partida & Taher Kahil & Tatiana Ermolieva & Yuri Ermoliev & Belize Lane & Samuel Sandoval-Solis & Yoshihide Wada, 2019. "A Two-Stage Stochastic Optimization for Robust Operation of Multipurpose Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3815-3830, September.
    4. L.F. Escudero, 2000. "WARSYP: a robust modeling approach for water resources system planning under uncertainty," Annals of Operations Research, Springer, vol. 95(1), pages 313-339, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    2. Siddappa Pallavi & Shivamurthy Ravindra Yashas & Kotermane Mallikarjunappa Anilkumar & Behzad Shahmoradi & Harikaranahalli Puttaiah Shivaraju, 2021. "Comprehensive Understanding of Urban Water Supply Management: Towards Sustainable Water-socio-economic-health-environment Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 315-336, January.
    3. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    4. Lihong Pan & Miyuan Shan, 2024. "Optimization of Sustainable Supply Chain Network for Perishable Products," Sustainability, MDPI, vol. 16(12), pages 1-22, June.
    5. Swati Sirsant & M. Janga Reddy, 2021. "Optimal Design of Pipe Networks Accounting for Future Demands and Phased Expansion using Integrated Dynamic Programming and Differential Evolution Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1231-1250, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    2. Zhangling Xiao & Mingjin Zhang & Zhongmin Liang & Jian Wang & Yude Zhu & Binquan Li & Yiming Hu & Jun Wang & Xiaolei Jiang, 2024. "Improved Multi-objective Butterfly Optimization Algorithm and its Application in Cascade Reservoirs Optimal Operation Considering Ecological Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4803-4821, September.
    3. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.
    4. J. Yazdi, 2018. "Improving Urban Drainage Systems Resiliency Against Unexpected Blockages: A Probabilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4561-4573, November.
    5. J. Yazdi & M. Sabbaghian Moghaddam & B. Saghafian, 2018. "Optimal Design of Check Dams in Mountainous Watersheds for Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4793-4811, November.
    6. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    7. J. Yazdi & A. Hokmabadi & M. R. JaliliGhazizadeh, 2019. "Optimal Size and Placement of Water Hammer Protective Devices in Water Conveyance Pipelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 569-590, January.
    8. Kong, Lingzhong & Li, Yueqiang & Tang, Hongwu & Yuan, Saiyu & Yang, Qian & Ji, Qingfeng & Li, Zhipeng & Chen, Ruibin, 2023. "Predictive control for the operation of cascade pumping stations in water supply canal systems considering energy consumption and costs," Applied Energy, Elsevier, vol. 341(C).
    9. Almiñana, M. & Escudero, L.F. & Landete, M. & Monge, J.F. & Rabasa, A. & Sánchez-Soriano, J., 2010. "WISCHE: A DSS for water irrigation scheduling," Omega, Elsevier, vol. 38(6), pages 492-500, December.
    10. J. Yazdi & A. Moridi, 2018. "Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4779-4791, November.
    11. J. Yazdi, 2019. "Optimal Operation of Urban Storm Detention Ponds for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2109-2121, April.
    12. Feifei Zheng & Zhexian Qi & Weiwei Bi & Tuqiao Zhang & Tingchao Yu & Yu Shao, 2017. "Improved Understanding on the Searching Behavior of NSGA-II Operators Using Run-Time Measure Metrics with Application to Water Distribution System Design Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1121-1138, March.
    13. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:13:d:10.1007_s11269-020-02658-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.