IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i13d10.1007_s11269-019-02373-x.html
   My bibliography  Save this article

A Depth-First Search Algorithm for Optimizing the Gravity Pipe Networks Layout

Author

Listed:
  • Gustavo Paiva Weyne Rodrigues

    (Vale do Acaraú State University)

  • Luis Henrique Magalhães Costa

    (Vale do Acaraú State University)

  • Guilherme Marques Farias

    (Science and Technology of Ceará)

  • Marco Aurélio Holanda Castro

    (Federal University of Ceará)

Abstract

The layout is displayed in one of the most complex tasks in the gravity pipe network project because there are several factors to consider and often a choice of unassociated or smaller layout. Currently, the designer’s experience is needed so different layout alternatives be analyzed to reduce the depths of the network. Generally, this operation is manual and does not ensure the best result. For this research, a depth-first search algorithm was presented, which allows the optimization of the layout of a gravity pipe network, assessing the topographic conditions of the manholes (nodes), leading to a layout that has the sum of lower unfavorable slopes. A hypothetical and a real network were used. The computational time required was considered negligible. The results showed a robust model, which works for the complete layout of any network, of any size, resulting in the lowest possible depths.

Suggested Citation

  • Gustavo Paiva Weyne Rodrigues & Luis Henrique Magalhães Costa & Guilherme Marques Farias & Marco Aurélio Holanda Castro, 2019. "A Depth-First Search Algorithm for Optimizing the Gravity Pipe Networks Layout," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4583-4598, October.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02373-x
    DOI: 10.1007/s11269-019-02373-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02373-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02373-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua Steele & Kurt Mahoney & Omer Karovic & Larry Mays, 2016. "Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1605-1620, March.
    2. Joshua C. Steele & Kurt Mahoney & Omer Karovic & Larry W. Mays, 2016. "Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1605-1620, March.
    3. Ali Haghighi & Amin Bakhshipour, 2012. "Optimization of Sewer Networks Using an Adaptive Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3441-3456, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Henrique Magalhães Costa & Gustavo Paiva Weyne Rodrigues, 2021. "Automatic Generation of Water Distribution Networks from Streets Layout," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1299-1319, March.
    2. M. Blokland & R. D. van der Mei & J. F. J. Pruyn & J. Berkhout, 2023. "Literature Survey on Automatic Pipe Routing," SN Operations Research Forum, Springer, vol. 4(2), pages 1-56, June.
    3. Tianwei Mu & Yan Lu & Haoqiang Tan & Haowen Zhang & Chengzhi Zheng, 2021. "Random Walks Partitioning and Network Reliability Assessing in Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2325-2341, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Praveen K. Navin & Yogesh P. Mathur, 2016. "Layout and Component Size Optimization of Sewer Network Using Spanning Tree and Modified PSO Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3627-3643, August.
    2. Faisal M. Alfaisal & Larry W. Mays, 2021. "Optimization Models for Layout and Pipe Design for Storm Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4841-4854, November.
    3. Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
    4. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    5. Anna Petit-Boix & David Sanjuan-Delmás & Sergio Chenel & Desirée Marín & Carles Gasol & Ramon Farreny & Gara Villalba & María Suárez-Ojeda & Xavier Gabarrell & Alejandro Josa & Joan Rieradevall, 2015. "Assessing the Energetic and Environmental Impacts of the Operation and Maintenance of Spanish Sewer Networks from a Life-Cycle Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2581-2597, June.
    6. Valentina Marchionni & Nuno Lopes & Luis Mamouros & Dídia Covas, 2014. "Modelling Sewer Systems Costs with Multiple Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4415-4431, October.
    7. Omer Karovic & Larry Mays, 2014. "Sewer System Design Using Simulated Annealing in Excel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4551-4565, October.
    8. Pantelis Broukos & Antonios Fragkogios & Nilay Shah, 2022. "A Linearized Mathematical Formulation for Combined Centralized and Distributed Waste Water Treatment Network Design," SN Operations Research Forum, Springer, vol. 3(3), pages 1-29, September.
    9. Hriday Kalita & Arup Sarma & Rajib Bhattacharjya, 2014. "Evaluation of Optimal River Training Work Using GA Based Linked Simulation-Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2077-2092, June.
    10. Anna Petit-Boix & Núria Roigé & Albert de la Fuente & Pablo Pujadas & Xavier Gabarrell & Joan Rieradevall & Alejandro Josa, 2016. "Integrated Structural Analysis and Life Cycle Assessment of Equivalent Trench-Pipe Systems for Sewerage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1117-1130, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02373-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.